
AFRL-IF-RS-TR-2000-10
Final Technical Report
February 2000

»^

BROADCAST OBJECTS FOR EFFECTIVE DATA
DISSEMINATION IN BADD

Brown University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F078

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20000328 010
The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

ÜT1Ü QUALITY INSPECTED _

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

WfTC"QüÄErf?r"WäraCTS!I) &.

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-10 has been reviewed and is approved for publication.

): \Ul^<^fi APPROVED: V\i.iviäh.i *rv>uj/>j^

WILLIAM E. RZEPKA
Project Engineer

FOR THE DIRECTOR: HUhWVJ' V*^ ^

NORTHRUP FOWLER
Technical Advisor
Information Technology Division

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

BROADCAST OBJECTS FOR EFFECTIVE DATA DISSEMINATION IN BADD

Stanley B. Zdonik

Contractor: Brown University
Contract Number: F30602-97-2-0241
Effective Date of Contract: 03 July 1997
Contract Expiration Date: 30 May 1999
Short Title of Work: Broadcast Objects for Effective

Data Dissemination in BADD
Period of Work Covered: Jul 97 - May 99

Principal Investigator: Stanley B. Zdonik
Phone: (401) 863-7648

AFRL Project Engineer: William E. Rzepka
Phone: (315)330-2762

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by William E. Rzepka, AFRL/IFTD, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE
hnn Approved

OMB No. 0704-0188

Put* m»tq bud«, lot INS «ten» of Mourn«, u «linitod I. muo. 1 h™, pif rm»». «ri»tag IM In» I« ™»n, OUIIKMU. niRhn, «tmigian .«ra>. «ilium,I ""^■n.-.t.mm,,(h,i I "'^ "^Ä fn ™S
Ih. cokcwnlt MomulH». S«d commnt. rogwhng IN. burftn ..,m.„ „ «y otht. «poet =1 IN> colkclm, of Mom,«,«, ijajn« sugt«»™! I« mota«, tte ta*j to W«h^on ..*u.r,.r, Suvas. Dncunu lor Mom»»»
Oporitionl iml flipeni. 1215 JiHirai Dow Highwoy, Sum 1204. Artaglon, V» 222024302. »4lo It. Ollicl ol MmagimM ml Buojtt. Piowwort RoduclionPIO«IC! (070401881. WisNnglon, DC 20503.

1. AGENCY USE ONLY /Leave blank) 2. REPORT DATE

FEBRUARY 2000

3. REPORT TYPE AND DATES COVERED

Final Jul 97 - May 99
4. TITLE AND SUBTITLE

BROADCAST OBJECTS FOR EFFECTIVE DATA DISSEMINATION IN BADD

6. AUTHORIS)

Stanley B. Zdonik

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS1ESI

Brown University
Computer Science Department
Box 1910
Providence RI 02912

9. SPONSORING/MONITORING AGENCY NAMEIS) AND ADDRESS1ESI

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFTD
3701 N Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441 -4505

S. FUNDING NUMBERS

C - F30602-97-2-0241
PE- 63750D
PR- IIST
TA- 00
WU- 14

.PERFORMING ORGANIZATION

REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2000-10

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: William E. Rzepka/IFTD/(315) 330-2762

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Data dissemination systems are difficult to design properly. Since interest in this topic is relatively new, there is little
excerption with methods for making performance decisions. This project has been focused on providing tools for
understanding the impact of design decisions in dissemination-based data delivery.

We have developed two broad classes of tools. The first is a set of simulation-based tools that allowed us to study
fundamental algorithms. We have applied these simulators to the problem of information channelization. We have built a
test harness for controlling the deployment of multiple experiments and the collection of results into a convenient graphical
form. We see this a major step toward a commander's workbench, a tool to help commanders make resource allocation

decisions.
The second class of tool is a toolkit that allows us to quickly assemble prototype (perhaps in a local-area network) that

mimics the ultimate deployed system. A prototype of this kind can be instrumented and performance measurements can be
collected that gives us more realistic insight than a simulator. This approach provides the second line of defense.

14. SUBJECT TERMS

Data Broadcast, Push Technology, Software, Computers

17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION

OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

JJQLQ
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
PnienM by ANSI SI! 239.18
OtagiM mug Pirtomi Pro. WHS/DIOR. Oct 94

Contents
o

1 Dissemination-Based Information Systems

1.1 The DBIS Framework

1.2 The DBIS Toolkit and Example Application 2

3 2 On-Demand Broadcasting

2.1 Scheduling with RxW 3

2.2 Data Staging

3 Self-Adaptive User Profiles for Large Scale Data Delivery 5

4 Information Quality Metrics

5 Channelization

5.1 Simulator Structure
7

5.2 Simulator Measurements

g
6 References

Appendix A A Scheduling Approach for Large-Scale On-Demand Data Broadcast

Appendix B Data Staging for On-Demand Broadcast

Appendix C Research in Data Broadcast and Dissemination

Appendix D DBIS-Toolkit: Adaptive Middleware for Large Scale Data Delivery

Appendix E A Framework for Scalable Dissemination-Based Systems

Appendix F Data in Your Face: Push Technology in Perspective

Abstract

Data dissemination systems are difficult to design properly. Since interest in this topic is relatively
new there is little experience with methods for making performance decisions. This project has been
focused on providing tools for understanding the impact of design decisions in disseminat.on-based data

We have developed two broad classes of tools. The first is a set of simulation-based tools that allowed
us to study fundamental algorithms. We have applied these simulators to the problem of information
channelization. We have built a test harness for controlling the deployment of multiple experiments and
the collection of results into a convenient graphical form. We see this a major step toward a commander s
workbench, a tool to help commanders make resource allocation decisions.

The second class of tool is a toolkit that allows us to quickly assemble prototype (perhaps in a local-
area network) that mimics the ultimate deployed system. A prototype of this kind can be instrumented
and performance measurments can be collected that gives us more realistic insight than a simulator. This

approach provides the second line of defense.

Technical Report

1 Dissemination-Based Information Systems

The proliferation of the Internet and intranets, the development of wireless and satellite networks, and the
availability of asymmetric, high-bandwidth links to the home, have fueled the development of a wide range of
new "dissemination-based" applications. These applications involve the timely distribution of data to a large
set of consumers, and include stock and sports tickers, traffic information systems, electronic personalized
newspapers, and entertainment delivery. Dissemination-oriented applications have special characteristics
that render traditional client-server data management approaches ineffective. These include:

• tremendous scale.

• a high-degree of overlap in user data needs.

• asymmetric data flow from sources to consumers.

To address the particular needs of dissemination-based applications, we have developed a general frame-
work for describing and constructing Dissemination-Based Information Systems (DBIS) [Fran97, Fran98J.
The framework incorporates a number of data delivery mechanisms and an architecture for deploying them
in a networked environment. The goal is to support a wide range of applications across many varied en-
vironments, such as mobile networks, satellite-based systems, and wide-area networks. By combining the
various data delivery techniques in a way that matches the characteristics of the application and achieves
the most efficient use of the available server and communication resources, the scalability and performance
of dissemination-oriented applications can be greatly enhanced. We have constructed an initial version of a
toolkit that implements this framework, and have demonstrated it at the 1999 ACM SIGMOD International
Conference on the Management of Data [Alti99].

1.1 The DBIS Framework

The basic concepts of the DBIS framework were presented at the OOPSLA 97 conference [Fran97]. A
more recent description appears in [Akso98b]. The two major features of the framework are: First, it
incorporates a number of different options for data delivery, including traditional request-response, pub-
lish/subscribe, Broadcast Disks and on-demand broadcast [Akso98a]. Second, it is based on the notion of
network transparency, which allows different data delivery mechanisms to be mixed-and-matched within a
single application. Network transparency is provided through the use of Information Brokers, which acquire
information and distribute it to other consumers. Brokers are middlemen; a broker acts as a client to some
number of data sources, collects and possibly repackages the data it obtains, and then functions as a data
source to other nodes of the system. Along the way, brokers may add value to the information, such as
integrating it with data from other sources or enhancing its organizational structure. By creating hierarchies
of brokers, information delivery can be tailored to the needs of many different users.

1.2 The DBIS Toolkit and Example Application

We have developed an initial prototype of a toolkit that implements the DBIS architecture. The toolkit is
written in Visual C++ and runs on Windows NT. It exploits the IP-Multicast support that is included with
NT 4 0 The toolkit consists of 30,000 lines of code, although a portion of this consists of code generated by
the Visual C++ tools for user interface functions. The toolkit is described in more detail in [Alti99J.

The toolkit provides a set of application programming interfaces (APIs) and libraries that allow a de-
veloper to construct and experiment with a DBIS application. The DBIS-Toolkit consists of four main

components:

Data Source (DS) Library - a data source wrapper that encapsulates network communication and
provides conversion functions for data.

Client Library - a client program wrapper that encapsulates network communication and provides
conversion functions for queries and user profiles. It also provides monitoring and filtering of broadcast or
multicast channels.

Information Broker (IB) - the main component of the DBIS-Toolkit. The IB contains communication,
buffering, scheduling, and catalog management components and is described in more detail below.

Information Broker Master - The IB Master is responsible for managing global catalog information
about data and the topology of the DBIS. All IBs must register with the IB Master and all catalog updates

must be sent to the IB Master.

In addition to these four components, the toolkit contains a flexible performance monitoring and instru-
mentation interface that can be used to graphically display real-time performance metrics such as bandwidth
and CPU utilization, response times, etc. on a per-IB basis. The instrumentation tool also allows more
application-specific metrics to be obtained and displayed.

We have used the toolkit to construct a CONUS weather map dissemination application, in which weather
maps for various regions of the Continental United States can be delivered to large numbers of users via
push/pull, multicast/unicast and their various combinations. Perhaps most impressively, we demonstrated
how the data delivery mechanisms between various components can be changed on-the-fly, without requiring
the application to be restarted, and without impacting components that were not directly connected to the

changed data flow.

2 On-Demand Broadcasting

As described above, one of the many possible mechanisms for data dissemination uses on-demand (i.e.,
aperiodic pull) broadcast of data. In a typical scenario, two independent networks are used: a terrestrial
network for sending pull requests to the server, and a "listen only" satellite downlink over which the server
broadcasts data to all of the clients. When a client needs a data item (e.g., a web page, database object,
map, etc.) that it cannot find locally, it sends a request for the item to the server. Client requests are
queued up (if necessary) at the server upon arrival. The server repeatedly chooses an item from among these
requests, broadcasts it over the satellite link, and removes the associated request(s) from the queue. Clients
monitor the broadcast and receive the item(s) that they require.

2.1 Scheduling with RxW

In a large-scale implementation of such a system, an important consideration is the scheduling algorithm that
the server uses to choose which request to service from its queue of waiting requests. We have developed a
novel on-demand broadcast scheduling algorithm, called RxW [Akso98a], which is a practical, low-overhead
and scalable approach that provides excellent performance across a range of scenarios.

The intuition behind the RxW scheduling algorithm is to provide balanced performance for hot (pop-
ular) and cold (not so popular) pages. This intuition is based on our observations of previously proposed
algorithms, which failed because they favored one class of items over the other, or because they were too
expensive to be used in a real system. The RxW algorithm schedules the page with the maximal RxW
value where R is the number of outstanding requests for that page and W is the amount time that the
oldest of those requests has been waiting for the page. Thus, Rx W schedules a page either because has many
outstanding requests or because there is at least one request that has waited for a long time.

The search algorithm is made efficient by using two sorted lists of requests (one ordered by R values and
the other ordered by W values) threaded through the service queue. The algorithm prunes the search space
by alternating between the two lists, each time, bounding the search on the other list. When the limit on

one of the lists is reached, the page with the maximal RxW has been found and can be broadcast. In our
experiments, this pruning technique was found to reduce the size of the search space by over 70%.

We also developed an approximation-based version of the algorithm to provide even further reductions
in scheduling time with only minimal impact on scheduling quality. By varying a single parameter this
algorithm can be tuned from having the same behavior as the RxW algorithm described previously, to being

a constant time approach.

We implemented RxW and its approximate version on our dissemination toolkit. Experiments with the
toolkit verified the effectiveness and efficiency of RxW and showed that for our particular configuration the
approximate version was able to significantly outperform the full version, providing fast scheduling while

still producing a high-quality broadcast schedule.

2.2 Data Staging

While the RxW algorithm is a practical approach to on-demand broadcast scheduling, it like all previous work
on broadcast scheduling, does not account for the need to obtain the items before they can be broadcast.
In many large-scale applications data may not be available immediately when required by the scheduler.
There are many applications that involve large amounts of data that cannot be cost-effectively Stored in
main memory. Furthermore, in a wide-area distributed system such as the WWW the data to be broadcast
is likely to reside at a remote site. In either case, data items must be retrieved and brought into the server s
main memory before they can be broadcast. The need to fetch data from various locations produces large
variance in service times, which can destroy the performance of traditional scheduling heuristics. Thus, a
communications-centric approach that ignores data management issues can result in significant degradation
of broadcast efficiency. For this reason, we have investigated the coordination of broadcast scheduling with
the management of the data items to be broadcast. We refer to this integrated functionality as data staging.

We have developed three complementary approaches to data staging All three approaches exploit the
information on page popularity that is maintained by RxW and have been integrated with RxW in our
dissemination testbed. The three data staging approaches are the following:

. Opportunistic Scheduling: In a large-scale broadcast system, broadcast bandwidth is the key shared
resource, and thus, it is crucial utilize it to the fullest extent. It is a well-known property of broadcast
scheduling that the optimal allocation of bandwidth to items is proportional to the ratio of^the square
roots of their access probability. The practical implication of this is that the broadcast effectiveness
is not greatly effected by small deviations from its optimal allocation. We exploit this property by
sometimes broadcasting sub-optimal, but memory resident data items, while the scheduled items are
being brought into the server's cache. We have developed three alternative approaches for choosing

these alternative items to be broadcast.

• Caching: An obvious way to reduce the need for fetching data items is to make the best use of the
available memory space on the server. The key to successful caching is to retain those items that are
most likely to be scheduled. The RxW algorithm is able to provide very good hints for differentiating
between hot and cold items. We exploit this property to make intelligent caching decisions.

• Prefetching: Another method to reduce access latency is to predict which items will be broadcast in
the near future and bring them into the cache before they are actually scheduled for broadcast. Since
it is the responsibility of the caching policy to keep hot items available, prefetching focuses only on
cold items, which are not likely to be in the cache. The RxW algorithm can help identny cold items

that are likely to be broadcast in the near future.

Our performance experiments using both synthetic workloads and WWW server traces have shown that
data staging concernsZe indeed crucial, and that these approaches are effective (to varying extents) in
providing substantial performance improvements for on-demand broadcast.

3 Self-Adaptive User Profiles for Large Scale Data Delivery

User profiles, which encode the data needs and interests of users, are lie at the heart of any dissemination-
based information systems. i,From the user's viewpoint, a profile provides a means of passively retrieving
relevant information. A user can submit a profile to a push-based system once, and then continuously
receive data that are relevant to him or her in a timely fashion without the need for submitting the same
query over and over again. This automatic flow of relevant information helps the user keep pace with the
ever-increasing rate of information generation. From the system point of view, profiles fulfill a role similar
to that of queries in database or information retrieval systems. In fact, profiles are a form of continuously
executing query. In a large data dissemination system, the storage and access of user profiles can be be
resource-intensive. Additionally, given the fact that user interests are changing over time, the profiles must
be updated accordingly to reflect up to date information needs.

We have developed an algorithm called Multi-Modal (MM), for incrementally constructing and maintain-
ing user profiles for filtering text-based data items [Ceti99]. MM can be tuned to tradeoff effectiveness (i.e.,
accuracy of the filtered data items), and efficiency of profile management. The algorithm receives relevance
feedback information from the users about the documents that they have seen (i.e., a binary indication of
whether or not the document was considered useful), and uses this information to improve the current profile.
One important aspect of MM is that it represents a user profile as multiple keyword vectors whose size and
elements change dynamically based on user feedback.

In fact, it is this multi-modal representation of profiles which allows MM to tradeoff effectiveness and
efficiency. More specifically, the algorithm can be tuned using a threshold parameter to produce profiles
with different sizes. Let us consider the two boundary values of this threshold parameter to illustrate this
tradeoff: When the threshold is set to 0, a user profile is represented by a single keyword vector, achieving
an extremely low overhead for profile management, but seriously limiting the effectiveness of the profile. At
the other extreme, if the threshold is set to 1, we achieve an extremely fine granularity user model, however
the profile size equals the number of relevant documents observed by the user, making it impractical to store
and maintain profiles. Therefore, it is more desirable to consider intermediate threshold values which will
provide an optimal effectiveness/efficiency tradeoff for a given application.

We evaluated the utility of MM by experimentally investigating its ability to categorize pages from the
WWW. In particular, we tested its ability to learn (human-generated) categories provided by the Yahoo!
index. Our focus was on the tradeoffs between profile sizes and effectiveness (using non-interpolated average
precision as our primary effectiveness metric). The evaluation demonstrated that MM can achieve signif-
icantly higher precision values with only a modest increase in profile sizes. Additionally, MM was able to
achieve precision values with small profiles that were comparable to, or in some cases even better than those
obtained with maximum-sized profiles. The details of the algorithm, experimental setting, and the results

are discussed in [Ceti99].

4 Information Quality Metrics

A subproject of this work has investigated the connections between data dissemination policy and task
utility. While there are various quality metrics that can be gathered directly on an information stream,
those metrics might not translate directly into the "quality" with which an information-dependent task is

performed.

One of the aims of the subproject was to gain insight on how the intuitive notion of the "importance"
of an information stream can be translated into a lower-level system control policy. Some proposals that we
saw put forward in the BADD implementation effort, such as interpreting importance as straight priority,
seemed to have unpleasant consequences, such as task starvation.

To get better qualitative and quantitative handle on task utility, we concetrated on a particular category
of task namely those that depend strongly on a situation estimate. By "situation estimate", we mean a
computer-based model of some part of the physical world. Examples of situation estimates might include

terrain elevation and cover, major lines of communication for vehicles, and location and patterns f™™™
of radio broadcast sites. By "stong dependence" of a task on a situation estimate, we mean a task who
performance directly correlates with the accuracy and currency of the estimate. For example a task o detect
when red-force vehicles cross a certain boundary could strongly depend on an estimate of vehicle tracks.

One result of our analysis of utility of information streams for such tasks is the recognition that utility
cannot simply be assigned to individual information items in a stream. There are several reasons that ut lity
can't be aligned to Items in isolation. One is that the effect of losing one item can depend on whether
other items in the information stream were received at the task site. Losing one report on a vehicle _position
might have minor effect if reports three seconds earlier and three seconds later were received. On the other
hand, loss of one information item might render others useless, or of much diminished value For^example
if two listening stations are reporting the time, bearing and frequency of radio ^^^^X
from one may make the corresponding report from the other useless for purposes of locating an emitter by

triangulation.
In addition, the relative contribution of a given information item might depend on the latency with which

it is received. A position report on a vehicle will lose value as it is delayed, especially after a subsequent

report is recieved on the same vehicle.

Thus, schemes for managing information streams that are based on assigning static values to individual
information items are likely to result in sub-optimal dissemination policies. Rather, such policies need to be
evaluated by their effect on an information stream as a whole as it influences task performance.

To gain a better understanding of these issues, we have begun a simulation effort to evaluate different
channef-scheduling and item-dropping schemes relative to task performance. As ar' ^Tg^«^
sumption, we have approximated task performance by situation estimate accuracy. We essentially measure
the integral of estimate error over time (so higher scores mean poorer task performance).

Our initial simulations are looking at different channel-scheduling policies relative to this measure. _We
have pure-priority, round-robin and weighted-deficit round-robin schedulers running. Initial simulations

reveal that pure-priority scheduling benefits the task using the ^^^^,^^^'^!
detriment of all tasks at any lower priority. Round-robin ensures that all tasks get a share £^«*£*
for their information streams, but fails to reflect relative importance of task. Weighted-deficit round-robin is
a Ic-called "proportional share" scheduling algorithm, and allows more important streams to receive a larger
share of resources, while not starving or arbitrarily delaying other streams.

Currently, different streams are served on a first-come, first-served basis and queues of information items
can grow without bound. Planned extensions will incorporate dropping policies and reordering of streams.

5 Channelization

In a publish-subscribe system, a profile describes a client's interest in a set of data items, and these profiles
are used by a server (i.e., a data source) to send data to appropriate clients.

Often, the information that is sent to clients is broken up into a number of channels A channel is a
tranmission medium with fixed bandwidth over which data can be sent. Typically, chents can listen to a
cons'aTnS Zt of channels. These channels can be physical manifestations requ nng specialized tuners at
STSe^oTt«*, satellite systems), or they can be virtual by mutiplexing multiple channels on a single
phystTchrnnS:\n the case of virtual channels, they provide a way of narrowing the focus of what a client

must filter.

5.1 Simulator Structure

We have constructed two simulation models to study a satellite-based publish-subscribe system. Each model
has throwing fundamental characteristics. A data source produces updates to data based some update

distribution with exponential interarrival rates. Clients are each connected to some number of satellite
channels, and a delivery mechanism uses client profiles to send data source updates on channels so as to
satisfy all client interests. The delivery mechanism contains three pieces. The first is a Profiler which matches
updates with profiles to determine whether there exists a client interested in the update. Next, is the Mapper
that determines the channels on which to send updates based on the channels on which interested clients are
connected. Last, is the the Scheduler which determines the order in which to send updates.

The first model looks at two problems. First, how are clients assigned to channels, and second, how are
updates mapped to channels.

Client-to-channel assignment is a challenging problem because both client interests and data update rates
have to be considered while attempting to make efficient use of bandwith. This goal is achieved by trying
to group clients with similar profiles. The success of an algorithm is measured by the clients getting less of
what they don't want, and the Mapper making fewer copies of updates.

Page-to-channel mapping is also an interesting problem. Based on a client-to-channel assignment, the
Mapper determines on which channels to map updates. The mapping can be either static or dynamic. With
a static mapping, the channels that a data item is mapped to is fixed. With dynamic mapping, the channels
that a data item is mapped to is determined when the update is received by the Mapper. The goal of both
types of algorithms is to minimize the number of channels an update is sent on, and also, to reduce the load
accross all channels.

The second model reverses the approach of the first model. Data items are first mapped to channels, and
based on this mapping clients select channels on which to connect.

Here, the mapper effectively accomplishes both the task of client-to-channel assignment and page-to-
channel mapping with one algorithm. The mapper assigns data items to channels based on knowledge of
profiles and data item update rates. It attempts to cluster profiles so as to minimize the load accross channels
while also attempting to reduce the number of channels on which each client has to listen.

Client-to-channel assignment can be done in two ways: the data delivery mechanism can tell each client
on which channels it should listen, or with a guide of page to channel mappings, each client can select
appropriate channels.

5.2 Simulator Measurements

We use average stateness as our metric of how well we are doing. Average staleness is the difference between
the time at which the client receives an update minus the time at which the update actually occured
averaged over all clients that received that update. This represents an average delay for items to work their
way through the system. An important realization is that once the flow into the system exceeds a given
rate such that one or more of the queues becomes unstable, our average staleness measurements become
meaningless. Thus, we use a differential flow rate (DFR) to determine when the system becomes unstable.
It is the point at which the DFR becomes non-zero that is of interest. In other words, an algorithm that
delays this point is doing better than one that does not.

In the first simulation model, we have studied various client-to-channel assignment algorithms. We have
shown that the choice of an assignment mechanism here is related to the choice of a mapper algorithm at the
server. We have also studied several server mapping algorithms. One study shows that if D is a measure of
channel load and C is a measure of the number of copies that are made, an algorithm based on a combined
metric such as DC outperforms one that considers only D or one that considers only C.

Both of these simulators are working quite well and provide a good testbed for further study of chan-
nelization algorithms. This includes algorithms for profile matching, channel assignment, channel mapping,

and channel scheduling.

6 References

[Akso98a] D. Aksoy, M. Franklin "Scheduling for Large-Scale On-Demand Data Broadcasting" IEEE IN-
FOCOM '98, San Francisco, March, 1998, pp 651-659.

fAkso98b] D. Aksoy, M. Altinel, R. Bose, U. Cetintemel, M. Franklin, J. Wang, S. Zdonik. «Research in
Data Broadcast and Dissemination", (Invited Paper), 1st International Conference on Advanced
Multimedia Content Processing, Osaka University, Osaka, Japan, November, 1998, pp 196-210.

[Akso98c] D. Aksoy, M. Franklin "A Scheduling Approach for Large-Scale On-Demand Data Broadcast"
ACM/IEEE Transactions on Networking, accepted pending revision, December, 1998.

[Akso99] D. Aksoy, M. Franklin, and S. Zdonik. "Data Staging for On-Demand Broadcast", In Preparation,

June, 1999.

[Alti99] M. Altinel, D. Aksoy, T. Baby, M. Franklin, W. Shapiro and S. Zdonik. «DBIS-Toolkit: Adaptive
Middleware for Large Scale Data Delivery", (Demonstration Description) Proc. ACM SIGMOD
Int'l Con}, on Management of Data, Philadelphia, PA, June, 1999, pp 544-546.

[Ceti99] U. Cetintemel, M. Franklin, and C. Giles, «Self-Adaptive User Profiles for Large Scale Data
Delivery" Submitted for Conference Publication, June, 1999.

[Fran97] M. Franklin, S. Zdonik, "A Framework for Scalable Dissemination-Based Systems", Proc. ACM
Conf. on Object-Oriented Programming Systems, Languages, and Applications, (Invited Paper),

Atlanta, GA, October, 1997, pP94-105.

[Fran98] M. Franklin, S. Zdonik. "Data in Your Face: Push Technology in Perspective", Proc. ACM
SIGMOD Int'l Conf. on Management of Data (SIGMOD 98), Seattle, WA, June, 1998, pp 516-

519.

Appendix A

Scheduling for Large-Scale On-Demand Data Broadcast

Scheduling for Large-Scale On-Demand Data Broadcasting

Demet Aksoy. Michael Franklin
Computer Science Department and UMIACS

University of Maryland, College Park MD
demetScs.umd.edu, franklinOcs.umd.edu

Abstncl— Recent advances in telecommunications have en-
abled the deployment of broadcast-based wide-area informa-
tion services that provide on-demand data access to very large
client populations. In order to effectively utilize a broadcast
medium for such a service, it is necessary to have efficient,
on-line scheduling algorithms that can balance individual and
overall performance, and can scale in terms of data set sizes,
client populations, and broadcast bandwidth. In this study
we introduce a parameterized algorithm that provides good
performance across all of these criteria and can be tuned to
emphasize either average or worst case waiting time. Unlike
previous work on low overhead scheduling, the algorithm is
not based on estimates of the access probabilities of items,
but rather, it makes scheduling decisions based on the cur-
rent queue state, allowing it to easily adapt to changes in the
intensity and distribution of the workload. We examine the
performance of the algorithm using a simulation model.

I. INTRODUCTION

.4. On-dtmand Data Broadcast

Broadcast-based information systems are becoming in-
creasingly popular due to advances in telecommunications,
interConnectivity and mobile computing. Compared to tra-
ditional unicasi data transfer, broadcasting can be much
more efficient for disseminating information to large num-
bers of clients in applications where there is a high degree
of commonality among client interests. With unicast. a data
item must be transmitted at least once for every client who
requests it, resulting in scalability problems as the client
population increases. The World Wide Web has provided
numerous examples of such situations, such as election re-
sult servers, sporting event kiosks, stock market tickers, etc.
The access delays associated with such sites on the WWW
during periods of heavy use demonstrate the inefficiencies of
unicast delivery for dissemination-oriented applications.

The advantage of broadcast for data dissemination is that
each transmission of an item can satisfy the needs of po-
tentially many clients. Several forms of data broadcasting
have already been introduced commercially. Intel has been
broadcasting data along with normal TV signals [Intel94].
Hughes Network Systems is using satellites for delivering In-
ternet content [DirecPC] and plans to incorporate broadcast
technology. Broadcasting using cable technology is being
developed by Hybrid Networks Inc. [Hybrid] and others.
There has also been tremendous improvement in the band-
width that is available for data broadcast. For example,
the Teledesic system is expected to provide bandwidth of
155.52Mbps up to 1.244Gbps [Teledesic].

This work has been partially supported by the NSF under grant IR1-
9501353, by Rome Labs agreement number F306C2-97-2-0241 under
DARPA order number F078, and by-re»earch grants from Intel and
NEC.

B. Our Focus

While broadcast technology continues to advance in terms
of both ubiquity and bandwidth, improvements in intercon-
nectivity are fueling explosive growth in the amount of data
available on-line and the number of clients who wish to access
that data. In this paper, we focus on scheduling algorithms
for disseminaüon-orienitd applications in which a large and
possibly changing client population requests data items from
an information source equipped with a data broadcasting ca-
pability. The challenge in developing scheduling algorithms
for such on-demand data broadcast is to provide scalable per-
formance that balances average and individual (i.e., worst
case) responsiveness using the shared broadcast medium.
Such algorithms must cope with large databases, large client
populations with dynamically changing interests and compo-
sition, and with high broadcast bandwidth.

As indicated by the preceding discussion, a scheduling
approach for large-scale, on-demand data broadcast must
balance different requirements. The algorithms that have
been developed to date (e.g., [Dyke86], [Wong88], [Yaidya96],
[Su97]) have failed to meet one or more of these needs.
Some approaches have used simple scheduling policies such
as FCFS (First Come First Served), which provide average
case performance that is significantly lower than what could
be supported by the broadcast medium. More sophisticated
approaches aimed at providing better performance have been
based on assumptions that limit their applicability, such as
assuming very small database sizes, static data access prob-
abilities (thereby limiting the ability to adapt to changing
client needs), and/or ignoring the overheads associated with
making intelligent scheduling decisions.

A key element that has been missing from the previous
work is a comprehensive set of metrics for on-demand data
broadcast in large-scale data dissemination environments. In
this paper, therefore, we first outline the performance crite-
ria that must be addressed by such scheduling algorithms.
These criteria include: average and worst case performance,
scheduling overhead, and robustness in the presence of cer-
tain environmental changes. We show how existing algo-
rithms fail to meet one or more of these criteria.

We then define a parameterized algorithm, called RxW,
that performs well for all of these metrics and furthermore,
can be tuned to focus on scheduling overhead, average wait-
ing time, or worst case wait time according to the needs of
a particular application. RxW is robust to changes in the
client population and workload because it makes scheduling
decisions based only on the current queue state, rather than
depending on estimates of data item access probabilities.

10

Til«1 remainder of llie paper is structured as follows. In Sec-
tion II we give a brief description of the problem and define
the important criteria for evaluating scheduling algorithms
for large-scale broadcast. We then describe how previously
proposed algorithms measure up to these criteria. In Sec-
tion III we develop several variants of a new algorithm, called
i?j!V. which has low overhead and provides good average
and worst case performance. Section IV presents an evalua-
tion of the algorithm in terms of its performance, scalability,
and robustness to workload changes. Section V discusses
related work. Finally. Section VI presents our conclusions.

II. BACKGROUND

A. Environment

In this section we present a simple satellite-based broad-
cast scenario to motivate the scheduling problem we are
addressing. In this scenario (depicted in Figure 1) clients
use two independent networks for communicating with the
server: a terrestrial network for sending requests to the
server, and a "listen only" satellite downlink to receive data
from the server, similar to Hughes Network System's Di-
recPC architecture [DirecPC] and other satellite data ser-
vices. When a client needs a data item (e.g., a web page or
database object) that it cannot find locally, it sends a request
for the item to the server. Client requests are queued up (if
necessary) at the server upon arrival. The server repeatedly
chooses an item from among these requests, broadcasts it
over the satellite link, and removes the associated request(s)
from the queue. Clients monitor the broadcast and receive
the item(s) that they are waiting for.

jip jzp c,,„„ jip
Fig. 1. Example Data Broadcasting Scenario

The focus of this paper is on the scheduling algorithm used
by the server to choose the item to broadcast among those
that have been requested. Because a single broadcast of an
item satisfies all of the outstanding requests for the item, a
good scheduling algorithm has the potential to peatly im-
prove the effectiveness of the broadcast.

Similar to the previous work on broadcast scheduling
we make the following assumptions about the environment.
First, we assume that data items are fixed-length (e.g.,

database pages) so that the broadcast bandwidth can be di-
vided into equal length, item-sized "slots". In the remainder
of the paper, we refer to such fixed-sized items as "pages"
and we refer to the length (in time) of a broadcast slot as a
broadcast tick and use such ticks as the unit, of time measure.1

Second, we assume that clients continuously monitor the
broadcast after they make a request and we do not consider
the effects of transmission errors, so that all clients that are
waiting for an item receive that item when it is broadcast by
the server. Finally, we ignore the delay for sending requests
via the client-to-server uplink, which we expect to be small
compared to the latency of obtaining broadcast items from
a moderately or heavily loaded server.

B. Performance Issues

Given the application environment described so far, we can
now state our criteria for evaluating broadcast scheduling
algorithms for large-scale data dissemination.

B.l Responsiveness

The success of a scheduling algorithm is determined by its
ability to get requested data to the clients quickly. In this
regard, the first important metric, average waiting time is
the amount of time on average, from the instant that a client
request arrives at the server, to the time that the requested
item is broadcast. Second, worst case waiting time is the
maximum amount of time that any client request will have
to wait in the service queue to be satisfied.

B.2 Scheduling Overhead

Because of the requirement for scalability, a key aspect of
this study is the consideration of scheduling overhead at the
server. Overhead is examined in two categories:

1. Request Processing- When a new request arrives at the
server, the server must quickly decide whether or not
to place an entry in the request queue for the requested
item and/or update and possibly restructure the queue
contents. The speed of such processing limits the rate at
which requests can be processed by the server, effectively
placing a limit on the scalability in terms of request
arrival rate (e.g., number of clients supported).

2. Scheduling Decisions - On every broadcast tick the
server must choose a page to broadcast. If the de-
cision overhead is excessive the server may not be able
to support the increased broadcast bandwidth or larger
database sizes.

The two types of scheduling overhead are related: for ex-
ample, doing extra work when requests arrive (e.g., keeping
sorted lists of page access probabilities) can reduce the cost
of making scheduling decisions at the expense of an increased
cost for processing requests. The proper trade-off between
these costs is dictated by the types of scalability that are
important for a particular environment.

'The fixed length assumption simplifies the algorithm descrip-
tions and analysis. Recent work in broadcast scheduling has shown
how to extend scheduling algorithms to incorporate variable-length
items [Vaidya96], [Su97].

11

B.3 Robustness

In order to achieve the goals of responsiveness and scalabil-
ity, a scheduling algorithm will typically employ approxima-
tions and/or heuristics. Such heuristics must not be based on
static information that will cause the algorithm to perform
poorly if the workload or the environment changes.

C. Previous AlgorUhms

As stated in the Introduction, several algorithms for on-
demand broadcast scheduling have been proposed previously.
In this section, we describe existing algorithms and discuss
their limitations with respect to the criteria that were out-
lined in the preceding section. Dykeman et al. [Dyke86] stud-
ied on-line scheduling algorithms, and were the first to point
out that traditional FCFS scheduling would provide poor
average wait time for a broadcast environment when the ac-
cess distribution for data items was non-uniform. They pro-
posed several algorithms aimed at providing improved per-
formance. The algorithms studied in [Dyke86] (and later

described in [Wong88]) are the following:
. First Come First Served (FCFS): broadcasts the

pages in the order they are requested.
. Most Requests First (MRF): broadcasts the page

with the maximum number of pending requests.
. Most Requests First Lowest (MRFL): is essentially

same as MRF. but breaks ties in favor of the page with
the lowest access probability.

. Longest Wait First (LWF): selects the page that has
the largest total waiting time, i.e., the sum of the time
that all pending requests for the item have been waiting.

Figure 2 plots the average waiting time (in broadcast ticks)
for a workload with a database of 10000 pages. Client, re-
quests for pages are generated using a Zipf distribution of
maximum skewness (parameter 0=1). The results were
generated using the simulation environment and default pa-
rameters that we will describe in Section IV. As in [Dyke86],
the overheads associated with running the scheduling algo-

rithm at the server are not modeled here.

E
1=

Fig. 2.

10 lOO 1000

Req. Arrival Moan (requests/broadcast tick)

Average Wait Time for Algorithm» of Dykeman et al.

As can be seen in the figure, the best performance over-
all in this case is provided by LWF. As would be expected,

the average wait time increases for all algorithms as more
requests are introduced. Perhaps less predictably, however,
the average response time eventually levels off and becomes
insensitive to additional load. At this point, the remaining
algorithms are approximately 2.5 times slower than LWF.
Unfortunately, LWF is not. a practical algorithm for a large
system, as at each broadcast tick, it recalculates total accu-
mulated wait time for euerypage with pending requests in or-
der to decide which page to broadcast. For a high-bandwidth
system with a large database, such a scheduling algorithm
would likely become a bottleneck.2 MRF and MRFL algo-
rithms were introduced as lower-overhead alternatives.

The results of Figure 2 agree with those of [Dyke86],
[Wong88] except for two key points. First, the earlier work
did not investigate the performance of the algorithms under
very high loads, so it did not identify the flattening of the
performance curves for all of the algorithms under high load.
Second, in the earlier study MRFL was seen to provide a
performance between that of FCFS and LWF. Thus, MRFL
was proposed as a lower-overhead replacement for LWF. In
contrast, our results show that MRFL has poor performance
relative to LWF and thus, is not a reasonable replacement.
The differences in the conclusions stem from the fact that
the earlier study was performed using a very small database
(100 items, compared to 10000 in Figure 2). As the size of
the database increases, the probability of having a tie for the
largest number of requests diminishes. Without ties, MRFL
degenerates to MRF, and has relatively poor performance.

The poor performance of MRFL for larger systems has
also recently been shown by Su and Tassiulas [Su97]. In that
paper, they propose an alternative algorithm, called PIP-0.5
(Priority Index Policy), that performs as well as LWF in av-
erage wait time. Unlike LWF, PIP-0.5 can be implemented
with an 0(1) complexity for choosing the next page to broad-
cast. PIP-0.5 falls short of our performance criteria, because
it is based on estimates of the probability of access for each
item. As a result, its usefulness is limited to fairly stable
environments where those probabilities do not often change
significantly. Furthermore, the history mechanism that must
be employed to obtain such probability estimates can re-
sult in additional overhead, particularly for very large data
sets. Algorithms based on access probabilities and broadcast
histories have also been proposed by Vaidya and Hameed
[Vaidya96]. These algorithms have similar performance to
the PIP-0.5 algorithm, and also share that algorithm's limi-
tations in terms of robustness to changing workloads.

III. RxW: A PARAMETERIZED ALGORITHM

We now describe a new broadcast scheduling algorithm,
called RxW, which is a practical, low-overhead, scalable ap-
proach that provides excellent performance across a range of

scenarios.

JIn our implementation of LWF, we found that using one processor of
a DEC Alpha 2100 4/275 server and assuming a broadcast bandwidth of
155.52 Mbps, the LWF algorithm became a bottleneck with a database
size of 5543 8KByte pages.

12

A. Intuition

The results shown in Figure 2 demonstrated that MRF
and FCFS have poor average case performance compared to
the higher-overhead LWF algorithm. Probing more deeply
into their performance in this case leads to a very important
observation. Figures 3(a) and 3(b) show the performance of
the three algorithms for the 109? most popular pages in the
database (i.e.. the •'hot" pages), and the remaining 90% of
the pages (i.e.. the "cold" pages) respectively.3

As can be seen in the figures. MRF provides the lowest
waiting time for hot pages, but its performance for cold
pages is by far the worst of the three algorithms. In con-
trast, FCFS provides similar performance for both classes
of pages leading it to have the worst performance for hot
pages and the best for cold pages of the three. MRF chooses
the page with the highest number of outstanding requests,
so that requests for infrequently accessed pages must wait
until sufficient requests have arrived. Since MRF is not a
starvation-free algorithm; it is quite possible that a request
for a very cold page is never satisfied. In contrast, FCFS is
a fair algorithm in which the maximum time a request must
wait is the same for all pages. This behavior causes it to
spend more bandwidth on requests for cold pages. The fact
that both algorithms favor one class of pages over the other
results in their both having poor performance on average. In
contrast. LWF provides good performance for both types of
pages, resulting in better average performance overall. Based
on these observations, we set out to combine the two low-
overhead approaches (MRF and FCFS) in a way that would
balance their strengths and weaknesses and provide a more
even-handed treatment of hot and cold pages.

B. Scheduling with RxW

B.l The Exhaustive Algorithm

We have developed a new scheduling algorithm called
RxW (Requests times Wait), which provides good perfor-
mance by combining the benefits of MRF and FCFS in a
way that ensures scalability by having low overhead. RxW
broadcasts a page either because it is very popular or because
it has at least one long-outstanding request.

RxW maintains a service queue structure with a single
entry for each page that has outstanding requests. Entries
contain a page identifier (PID), the count of the number
of outstanding requests (REQcnt), and a time-stamp of
the earliest unsatisfied request for the item (IstARV). This
structure is hashed on PID.

The exhaustive algorithm works as follows: When a re-
quest arrives at the server, the server performs a hash look
up to find the entry of the requested page. If it finds an
entry, then it simply increments the REQcnt for that entry.
If no entry is found, then a new one is created with REQcnt
initialized to 1, and IstARV initialized to the current time.
At each broadcast tick, the server chooses to broadcast the
page with the largest value of (Ä * W) with R = REQcnt

'Recall that the popularity of the pages for this case were generated
according to the Zipf distribution.

and W = c/oot-lstARV. where clock is the current time
in broadcast ticks. The entry for this page is then removed
from the structure. The exhaustive algorithm finds the page
with the maximum value by simply performing a linear scan
of all the entries. Note that the queue size is limited by
N, the number of pages in the database. Thus, the exhaus-
tive RxW algorithm is similar in overhead to other proposed
O(N) algorithms, such as [Vaidya96]. Note however, that
Axil' makes decisions based only on the current state of
outstanding requests, and does not depend on estimates of
page access probabilities. A detailed analytical study of the
average waiting time and the limiting behavior of RxW is
provided in [Aksoy97].

B.2 The Pruning Algorithm

As with other O(N) scheduling algorithms, the overhead of
RxW scheduling can be reduced by performing more work
during request processing in order to keep the request in-
formation better organized. In order to avoid searching the
entire list of pages with outstanding requests, we thread two
sorted lists through the request queue structure: The Wait
list is simply a FCFS queue based on IstARV in ascend-
ing order; the second list is the Requests list, which is kept
sorted in descending order by REQcnt.

The Wait queue is maintained by simply appending a re-
quest entry to it when a request arrives for a page with no
outstanding requests and removing a page's entry when the
page is broadcast. The Requests list is maintained each
time a request is received. This maintenance involves mov-
ing the affected entry to the proper place in the sorted list.
We introduce an additional structure to speed up the mainte-
nance process and to guarantee scalability in request arrival
rates. This structure, called the "REQcnt index" contains
pointers to each cluster of REQcnt value, i.e. all pages
that have the same number of pending requests. Values are
added to and removed from this index as the request struc-
ture evolves. Using this index, request processing is an 0(1)
operation (note that for any one request, an entry moves
exactly one cluster up in the Requests list).

TOP (Requnu)
mmri ('//A . portton ? '////.

Isfrxi (Rmqurats)

limit (REQcnt) \ /

\ / *

3
TOP(Waii)

/sftrjct (Wait)

KX
limit (lilARV)

SS,
Fig. 4. Pruning the Search Space

The two sorted lists, (Requests and Wait), are used to
prune parts of each list where there is no possibility of con-
taining the entry with the highest RxW value. This pruning
technique is depicted in Figure 4. Note that nodes connected
by a dashed line belong to a single service queue entry. On
the left is the Requests list, ordered by descending REQcnt
and on the right is the Wait queue, ordered by ascending

13

■8 ro o
.5
CA
HI
Oi
CO
a.
o o

1 10 100 1000

Req. Arrival Mean (request/broadcast tick)

(a) Hot Pag«

10 100 1000

Req. Arrival Mean (request/broadcast tick)

(b) Cold Pages

Fig. 3. Average Waiting Time for Hot and Cold Page Requests

IstARV. When an entry is examined from the Requests
queue, it is known that all entries not yet scanned have a
REQcnt field that is less than or equal to that of the entry.
Thus, if the recently examined entry has values REQcnt'
and IstARV. the only way for a remaining entry to beat
the current maximum RxW value seen so far (MAX), is if

clock- IstARV >
MAX

REQcnt'

where clock is the current time. Thus, the entries that must
be searched on the Wait queue are bounded by:

MAX .
Hmit{\siARV) = min{lstARV,clock- REQcnt,>

The same kind of pruning can be applied on the Requests
list by scanning entries on the Wait queue. The pruning
algorithm starts from the top of the Request list (thereby
truncating the Wait queue) and then examining the top of
the Wait queue (thereby truncating the Requests list) and
alternating until the search reaches the bottom of one of the
(truncated) lists. Note that the stopping condition is checked
merely by comparing the limit values, rather than actually
maintaining a pointer to the exact boundary on the list.

This mechanism prunes the search space while still guaran-
teeing that the search will return the page with the maximum
RxW value. Thus, in the performance study that follows, we
ignore the exhaustive algorithm and use the term "RxW al-
gorithm" to refer to this pruning variant.

B.3 Approximation for Speed Up

Scheduling based on the highest RxW value makes effi-
cient use of broadcast bandwidth. Such efficiency, however,
comes at a price in terms of the overhead that is incurred
at each schc-duliii6 JeJsiuu. \= stated in Section II-B, such
overhead can ultimately limit scalability in terms of support-
able bandwidth or database size. The pruning technique for
RxW aims to reduce this overhead. As will be shown in
Section IV-C, this technique is indeed effective — for exam-
ple, in the main workload of our experiments this pruning

resulted in a 72% savings in terms of the number of entries
searched in order to find the maximum ÄxW-valued page.
While such a substantial savings is helpful, it is probably not
sufficient to keep the scheduling overhead from ultimately be-
coming a limiting factor as the system is scaled to the huge
applications that will be enabled by the national and global
broadcasting systems currently being deployed.

Based on insight gained from early experiments with the
RxW algorithm, we realized that the scheduling overhead
can be reduced dramatically by backing off from the re-
quirement of maximality for the RxW value when making
scheduling decisions. We have developed an approximate,
parameterized variant of RxW that allows the search space
to be reduced further, at the possible expense of making less
efficient use of the broadcast bandwidth. By varying a sin-
gle parameter, the algorithm can be tuned from having the
same behavior of the RxW algorithm described so far, to a
constant time approach that provides maximal scalability.

The parameterized version of RxW is based on two in-
sights about RxW scheduling. First, we found that with
highly skewed access patterns (as would be expected in many
dissemination-oriented applications), the page with the max-
imum RxW value is typically found very near the top of at
least one of the two lists (Requests or Wait). As a re-
sult, even the pruning-based RxW algorithm can spend sub-
stantial resources examining entries after it has already en-
countered the maximum-valued entry. The second insight is
that given a static workload (i.e., in terms of request arrival
rate and access probability distribution) the average RxW
value of the page chosen for broadcast typically converges
to some value. This latter insight is exploited to create a
self-adapting approximation algorithm based on the RxW
value of the most recently broadcast page. We take care,
however, to ensure that the approximation works well even
in the presence of a changing workload.

The approximation algorithm requires a single parameter
called accuracy, which can be set to any value, 0 or greater.

* Typically the accuracy parameter will be set to a value between 0 and
1. Larger values can be used, however. In the limit, setting accuracy

14

Scheduling works as follows: First, the algorithm maintains
a self-adapting threshold, which is updated on every broad-
cast tick by averaging the current threshold value with the
RxW value of the page that was chosen to be broadcast on
that tick. To find the next page to broadcast the request
structure is searched as in the regular (pruning) RxW al-
gorithm, but rather than searching for the page with the
maximal RxW value, the algorithm chooses the first page it
encounters whose RxW value that is greater than or equal
to accuracy x threshold. If no such page is found, then the
algorithm acts like the regular RxW algorithm and returns
the page with the maximum RxW value.

The setting of the accuracy parameter determines the per-
formance tradeoffs between average waiting time, worst case
waiting time, and scheduling overhead. The smaller the value
of the parameter, the fewer entries are likely to be scanned.
At an extreme value of 0. the algorithm simply compares the
top entry from both the Requests list and the Wait queue
and chooses the one with the highest RxW value. In this
case, the complexity of making a scheduling decision is re-
duced to 0(1), ensuring that broadcast scheduling will not
become a bottleneck regardless of the broadcast bandwidth,
database size, or workload intensity. In the following sec-
tion, we examine the performance tradeoffs of several settings
for the accuracy parameter. We refer to the approximation-
based RxW algorithms as RxW.a, where a equals the value
of the accuracy parameter as a percentage (e.g., an a setting
of 0.80 is called tfxU'.MÜ).

IV. EXPERIMENTAL RESULTS

A. Simulation Environment

Our experiments were performed using a simple simulation
model of the system using CSIM [Schw86]. As with previous
studies, the model is intended to capture only the quality of
the schedule produced by the given scheduling algorithms.
As such, it does not include the overheads of scheduling and
request processing at the server. These costs have been de-
scribed in the previous sections and are addressed in the
scalability portion of the experiments (Section IV-C). Also
in keeping with earlier studies, we do not model the costs of
using the back-channel for sending requests from the clients
to the server as these costs will be the same for all of the
scheduling algorithms.5 The broadcast channel is modeled
as a server with a fixed rate of broadcast. We do not specify
an absolute value for this rate, but rather, use broadcast ticks
as our measure of time. This approach emphasizes that the
results are not limited to any particular bandwidth and/or
data item size, but rather, that they describe fundamental
tradeoffs among the algorithms.

In the model, the client population is represented by a sin-
gle request stream. The client population model generates
non-blocking requests with exponential inter-arrival times

to oo results in the approximate algorithm behaving identically to the
regular pruning-based RxW algorithm.

'The COM of back-channel requests becomes more important when
trading off between server push and client pull over the broadcast as
in [Acha97].

with mean A. We use an open system model since our work is
aimed at supporting extremely large, highly dynamic client
populations, and such client populations cannot be realisti-
cally modeled with a closed simulation system. The request
pattern is shaped with a Zipf distribution [KnuthSl]. This
is a frequently used distribution for non-uniform data access.
It produces a'ceess patterns that become increasingly skewed
as its 6 parameter increases from 0 (uniform access proba-
bility) to 1 (highly skewed). The offset and freq parameters
are used to simulate interest shifts of the client population
and the frequency of such shifts. The parameters and their
settings are summarized in Table I.

B. Responsiveness

In the first experiment, we examine the responsiveness of
several variants of the RxW algorithm, and compare them
to the LWF and FCFS algorithms of Dykeman et al. As
stated previously, the results we present here are measures
of the quality of the scheduling choices made by the various
algorithms, and do not take into account the overhead of
scheduling and request processing. Under such assumptions,
LWF (and similar algorithms such as PIP-0.5) have provided
the best average case performance in previous studies. We
report results for four variants of RxW: The pruning algo-
rithm and the approximate algorithm with a values of 0.90,
0.80. and 0 (referred to as RxW.90, RxW .80, and RxW .0,
respectively). Recall that RxW.Q examines only the top en-
try of each the two sorted lists of requests, and thus, makes
scheduling decisions in constant time. The four variants of
RxW allow us to investigate the tradeoffs between the exact
and approximate approach, among the various a settings.

In Figure 5(a), we plot the average waiting time for each
scheduling algorithm, as the mean request arrival rate is var-
ied from 1 per tick to 1000 per tick along the x-axis (shown
with a log scale). All algorithms exhibit similar performance
here, with the average wait time increasing but ultimately
leveling off as the request arrival rate is increased. This
leveling off is a characteristic of broadcast data delivery to
clients with shared interests and differs dramatically from
what would be expected in a unicast environment.

Comparing the six algorithms, it can be seen that LWF
and the RxW algorithm provide the best average perfor-
mance (RxW even does slightly better for loads between 5
and 50 requests/tick). The good performance of RxW in this
case demonstrates that the scheduling decision metric used
by RxW is a reasonable substitute for that of LWF (the to-
tal waiting time), and even for perfect knowledge of access
probabilities (as used by PIP-0.5, which ahso has similar per-
formance to LWF). By far the slowest average performance
in this case is provided by FCFS. As described in Section III-
A, for a sufficiently loaded system FCFS allocates the same
bandwidth to all accessed pages, regardless of their popular-
ity, resulting in poor utilization of the broadcast.

The results for the approximate RxW algorithm show that
as the Q parameter, which sets the accuracy for the broad-
cast schedule, is decreased the average wait time increases.
For all three of the values shown, however, the performance

15

Svmbol Description Default Range Unit

dhSi:e Database Size 10000 [100-50000J pages

X Mean Req Arv (exp) 100 [1-1000] requests/tick

e Request Skew (zipf) 1.0 [0.0-1.0] -

0 Approximation Accuracy - 0, 0.80, 0.90 -

offset
fnq

Shift in Interest 0 [0-5000] number of pages

Interest Shift Freq n/a [1-100000] / 100000 broadcast ticks

TABLE I

SIMULATION MODEL PARAMETERS

5000

4500

LWF
RxW —-X-

RxW.90 •—E3--
Rxw.ao --©

RxW.O --^-
"FCFS" 1—

E

10 100 1000

Req. Arrival Mean (requests/broadcast tick)

(a) Average

Fig. 5. Responsiveness Measures

10 100 1000

Req. Arrival Mean (requests/broadcast tick)

(b) Worst Case

is significantly better than that of FCFS. The approximate
algorithm with an o value of 0.90 remains less than 10%
slower than the maximal algorithm. Even the constant-time
RxW.O pays less than a 33% penalty compared to the max-
ima! algorithm in the most extreme case here.

Figure 5(b) shows the worst case waiting time measured
for the same experiment as Figure 5(a). That is, we plot
the longest measured wait for any request that occurs dur-
ing the simulation run. Note that the simulation was run
one million broadcast ticks, so each page was broadcast at
least several times. Although worst case performance has
not been addressed by previous studies, it is an important
metric for many applications. As can be seen in the figure,
the ordering of the algorithms for worst case behavior is in-
verted compared to the average case. FCFS has the shortest
worst case waiting time. In fact, once a page has been re-
quested, it is guaranteed to be scheduled for broadcast before
any other page is broadcast twice. Thus, its worst case be-
havior is bounded by the number of pages (10,000 in this
case). In contrast, the LWF and RxW algorithms make no
such guarantees — popular pages may be broadcast multiple
times while requests for a less popular page are waiting.

For the approximate RxW algorithm, a serves as a knob
for adjusting the worst case waiting time in the opposite
direction of how it works for the average case. As a is de-
creased, the FCFS queue begins to play a larger role m the
scheduling process, and thus, the behavior begins to look
more like FCFS. As a result, for a - 0, the worst-case behav-
ior is within 15% of that of FCFS. Comparing Figures 5(a)
and (b), it is apparent that the a parameter provides a flex-

ible mechanism for trading-off worst case and average case
waiting times for a particular application environment, and
that it can also be set to balance both concerns reasonably
well (e.g., a = 0.80 in this case). In the next section we
show that a can also be used to adjust the overhead of the
scheduling decision process in order improve scalability.

C. Scheduling Overhead

As described previously, a critical aspect of scheduling
algorithms for large-scale data broadcasting is scalability.
The previous section focused on the performance of the al-
gorithms in an ideal setting where there was no overhead
for making scheduling decisions or processing requests. In
practice, however, such concerns can limit the ability for on-
demand systems to support large applications. As described
in Sections II-C and III, all of the algorithms are fairly effi-
cient in terms of request processing. They differ significantly,
however, in terms of scheduling overhead. In this section we
examine the question of scheduling overhead in more detail.

Figures 6(a) and (b) show the average number of request
queue entries searched each time a scheduling decision is to
be made (i.e., on each broadcast tick), as the request arrival
rate and the database size are increased, respectively. Fig-
ure 6(a) corresponds to the same settings as the previous two
graphs; that is, the database size is fixed at 10,000 pages and
the request arrival rate is varied from 1 to 1000 requests/tick.
As can be seen in the figure, LWF is by far the most expen-
sive of the algorithms shown for making scheduling decisions,
followed by the maximal RxW. Also, it can be seen that the

16

E

B

tn
E

E
E

10O0

Beq. Arrival Mean (requests/broadcast tick)

(a) Varying Request Rate (dbSize=10,000 pages)

10000

Database Size (pages)

(b) Varying Database Size (100 requests/tick)

50000

Fig 6. Scheduling Overhead Measures

approximate version of ArIV provides tremendous savings.6

LWF is an exhaustive algorithm, and under high loads,
there is at least one pending request for each data page.
Thus, the scheduling cost of LWF is proportional to the num-
ber of distinct pages that are accessed by the client popula-
tion, namelv 10.000 pages in this case. For a fast broadcast
bandwidth and/or large database size, the scheduling over-
head of LWF could easily become a bottleneck. The maximal
RxW algorithm, on the other hand, examines significantly-
fewer queue entries for each scheduling decision. In this case,
it examines 2729 entries on average at a load of 1000 re-
quests/tick: a savings of about 72.79J. It is important to note
that as was shown in Figures 5(a) and (b). these savings in
search complexity come at no cost in broadcast efficiency.

The savings provided by ÄxlV's pruning algorithm, how-
ever, are dwarfed by the tremendous savings provided by
the approximate version of the algorithm. In figure 5(a) at
a load of 1000 requests/tick, RxW .90 and RxW M exam-
ine 116 and 39 entries respectively, for savings of more than
98.8% and 99.6% respectively. With a set to 0, the approx-
imate algorithm scans only two entries providing maximum
scalability in terms of search overhead.

Figure 6(b) shows even more striking results for the
same algorithms, when the request rate is fixed at 100 re-
quests/tick and the database is scaled from 1 to 50,000 pages.
The overhead of LWF grows linearly with the database size,
approaching the limit of one entry per page. The overhead
of maximal RxW also grows linearly, but at a much slower
rate. Finally, similarly to part (a) of the figure, the over-
head of the approximate algorithms grows much more slowly,
with RxW.O remaining constant. The practical impact of
these results is that the approximate RxW algorithm pro-
vides tremendous scalability in terms of request arrival rate
and database size. In addition, although not shown here di-
rectly, these results indicate that RxW allows a broadcast
system to scale in terms of the supportable broadcast band-
width. Faster broadcast means shorter ticks, and thus, less

«Note that FCFS is not shown on the« graphs. It is a 0(1) scheduling
algorithm and so is insensitive to the parameters varied here.

time to make scheduling decisions. RxW is clearly capable
of making fast, scheduling decisions across a large range of
system sizes and workload intensities.

D. Robustness

RxW and its approximations do not depend on any long
term measurements or estimates of data access probability
distributions, which enables them to easily adapt to changes
in workload. The approximations, however, do use a thresh-
old value that is dependent on previous performance. To
test the robustness of the RxW variants, we performed a
detailed sensitivity analysis. Due to space constraints, we
briefly summarize the results of that analysis here. The re-
sults are reported in more detail in [Aksoy97].

In one set of experiments, the skewness of the access pat-
tern (i.e., 9) was varied between 1 (default) and 0 (a uni-
form distribution). As the skew is reduced, all of the algo-
rithms converge to the same average waiting time (at 9 -
0). The relative ordering of the algorithms studied remained
constant. A second set of experiments kept 9 at 1 but varied
the focus of interest (i.e., the most popular items) to dif-
ferent parts of the database. The results showed that the
approximate variants of RxW were slightly less robust than
LWF for infrequent shifts of interest but were significantly
more robust than LWF as the frequency of interest shifts was
increased. Finally, a third set of experiments introduced a
sudden 20-fold spike or a 20-fold decrease in the arrival rate
of client requests. The results showed that the number of re-
quest queue entries scanned by RxW and its approximations
still remained far below that of LWF.

V. RELATED WORK

In this paper we have presented a new on-demand schedul-
ing algorithm for large-scale data broadcast. The directly
relevant previous work on scheduling algorithms [Dyke86],
[Wong88], [Vaidya96], [Su97] has been addressed in detail in
Section II. In addition to this directly related work, there has
been much recent interest in other areas of data broadcasting.
A taxonomy of data delivery mechanisms (including various

17

forms of broadcast) along with a framework for describing
dissemination-based systems is provided in [Fran97]. Some
recent applications of dissemination-based systems include
information dissemination on the Internet [Yan96], [Best96].
Advanced Traveler Information Systems [Shekhar96] and dis-
semination using satellite networks [Dao96].

The Datacycle Project [HerniST], [Bowen92] at Bellcore
investigated the use of a repetitive broadcast medium for
database storage and query processing. An other early ef-
fort in information broadcasting, the Boston Community
Information System (BCIS) is described in [GirT90]. BCIS
broadcast news articles and information over an FM channel
to clients with personal computers specially equipped with
radio receivers. Recently, scheduling techniques from the
real-time community have been applied to data broadcast
by Baruah and Bestavros [Baru96]. The Broadcast Disks
project [Acha9-jb] has investigated a number of aspects of
data broadcast using periodic push including scheduling and
client caching [Acha95a], prefetching [Acha96] and integrat-
ing push and pull over a broadcast channel [Acha97]. The
issue of combining broadcast push and unicast pull is ad-
dressed in [Stath9T]. The mobility group at Rutgers [Imie94]
has done significant work on data broadcasting in mobile
environments. A main focus ha? been on indexing in or-
der to reduce power consumption at the mobile clients.
Yiswanathan [Vis94] has studied integrating push and pull
for a mobile broadcast environment.

VI. CONCLUSIONS

In this paper we focused on the challenges of large-scale
on-demand data broadcast introduced by high bandwidth
broadcasting media such as satellite or cable networks. Un-
like previous work, we began by proposing a comprehensive
set of performance criteria for scheduling algorithms. These
criteria include worst case as well as average response time,
three types of scalability, and robustness to changes in the
nature and or intensity of the workload. We then described
how previous algorithms fail in one or more of these criteria.

We proposed a scheduling algorithm called RxW, that pro-
vides a balanced treatment of hot and cold pages in order to
achieve a good overall performance. The algorithm uses a
novel pruning technique to reduce the search space for mak-
ing broadcast decisions. While the pruning was shown to be
effective, it was observed that such an algorithm could still
eventually become a bottleneck for very large applications.

We developed an approximate, parameterized variant of
RxW that allows the search space to be reduced further,
at the possible expense of making less efficient use of the
broadcast bandwidth. By varying a single parameter, the
algorithm can be tuned from the regular RxW algorithm, to
a constant Urne approach that provides maximal scalability.
We demonstrated the performance, scalability, and robust-
ness of the different RxW variants through an extensive set
of performance experiments.

In terms of future work, we plan to integrate the on-
demand scheduling described here, with push-based and
other forms of data delivery as part of a larger Dissemination-

Based Information Systems (DBIS) framework as described
in [Fran97]. We also plan to investigate the scheduling of
broadcast for hierarchical broadcast environments.

Acknowledgements

The authors would like to thank to Ugur Cetintemel, Bjorn
Thor Jonsson and Mustafa Uysal for their helpful comments
on an earlier draft of this paper.

REFERENCES

[Acha95a] S. Aeharya, R.Alonso, M. Franklin, S. Zdonik, "Broadcast
Disks: Data Management for Asymmetric Communication Environ-
ments", Proc. ACM SIGMOD Con/., San Jose, CA, 1995.

[Acha95b] S. Aeharya, M. Franklin. S. Zdonik, "Dissemination-based
Data Delivery Using Broadcast Disks", IEEE Personal Communica-
tions, 2(6), 1995.

[Acha96] S. Aeharya, M. Franklin, S. Zdonik, "Prefetching from a
Broadcast Disk". Proceedings of the International Conference on
Data Engineering. New Orleans, LA, Feb 1996.

[Acha97] S Aeharya. M. Franklin, S. Zdonik, "Balancing Push and_
Pull for Data Broadcast", Proc. ACM SIGMOD, May 1997.

[Aksoy97] D.Aksoy, M.Franklin. "On-Demand Broadcast Scheduling",
Technical Report, CS-TR-3S54, University of Maryland, 1997.

[Baru96] S.Baruah, A.Bestavros, "Pinwheel Scheduling for Fault-
tolerant Broadcast Disks in Real-time Database Systems", Technical
Report TR-96-023, Boston University, August 1996.

[Best96] A.Bestavros,.C.Cunha, "Server-initiated Document Dissemi-
nation for the WWW", IEEE Data Engineering Bulletin, 1996

[Bowen92] T. Bowen. G. Gopal, K. Lee, A. Weinrib, "The Datacycle
Architecture", CACM Vol 32, No 12, December 1992.

[Dao96] S. Dao and B. Perry, "Information Dissemination in Hybrid
Satellite/Terrestrial Networks", Data Engineering, 19(13). 1996.

[DirecPC] Hughes Network Systems, http://www.direcpc.com, July 97.
[Dvke86] H.D. Dykeman, M. Ammar. J.W. Wong. "Scheduling Algo-

rithms for Videotex Systems Under Broadcast Delivery". IEEE In-
ternational Conference on Communications, Toronto. Canada. 19S6.

[Fran97] M. Franklin, S. Zdonik. "A Framework for Scalable
Dissemination-Based Systems", Proc. ACM OOPSLA Conf.. 1997.

[Giff90] D. Gifford, "Polychannel Systems for Mass Digital Communi-
cation", CACM, 37(10), 1994.

[Herm87] G.Herman, G.Gopal K.Lee, A.Weinrib, "The Datacycle Ar-
chitecture for Very High Throughput Database Systems", Proc.
ACM SIGMOD Conf., San Francisco, CA, May 1987.

[Hybrid] High-Speed Data Access for Teleworkers,
hiip://www.hybrid, com.

[Imie94] T. Imeilenski, B.R. Badrinath, "Energy Efficient Indexing On
Air", Proc. ACM SIGMOD Conf., Minneapolis, MN, May 1994.

[Intel94] Intel Corporation. Introduction to Intercast Technology,
http://www.initrcast.com, 1994.

[Knuth81] D. Knuth, "The art of Computer Programming - Volume
II", Addison-Wesley, 1981.

[Schw86] H.D. Schewtman, "CSIM: A C-based Process Oriented Sim-
ulation Language", Proc. of the Winter Simulation Conf., 1986.

[Shekhar96] S. Shekhar, A. Fetterer and D.R. Liu, "Genesis: An Ap-
proach to Data Dissemination in Advanced Traveler Information
Sytems", Data Engineering, 19(3), 1996.

[Stath97] K. Stathatos, N. Roussopoulos, and J.S. Baras, Adaptive
Data Broadcast in Hybrid Networks, in Proc. VLDB, 1997.

[Su97] C.J. Su, L.Tassiulas. "Broadcast Scheduling for Information
Distribution", Proc. IEEE INFOCOM, 1997.

[Teledesic] "Application of Teledesic Corporation for a Low Earth
Satellite System in the Domestic and International Fixed Satellite
Services," filed by Teledesic Corporation with the Federal Commu-
nications Commission, March 21, 1994.

[Vaidya96] N.H. Vaidya and S. Hameed. "Data Broadcast in Asymmet-
ric Wireless Environments". Proc. of Workshop on Satellite-based
Information Services (WOSBIS), New York, November, 1996.

[Vis94] S.R.Viswanathan, "Publishing in Wireless and Wireline Envi-
ronments", PhD Thesis, Rutgers University, 1994.

[Wong88] J.W. Wong, "Broadcast Delivery", in Proceedings of
IEEE.pp. 1566-1577, Dec. 1988.

[Yan96] T. Yan and H. Garcia-Molina, "Efficient Dissemination of In-
formation on the Internet", Data Engineering, 19(13), 1996.

18

Appendix B

Data Staging for On-Demand Broadcast

19

Data Staging for On-Demand Broadcast

Demet Aksoy
University of Maryland
demet@cs.umd.edu

Michael J. Franklin
University of Maryland
franklin @ cs.umd.edu

Stan Zdonik
Brown University
sbz@cs.brown.edu

Abstract—Advances in broadcast technology and de-
ployment, along with scalability concerns have made
wide-area data broadcasting an increasingly promis-
ing data delivery alternative for large client popula-
tions. As a result, there has been significant effort
towards developing on-line scheduling algorithms for
data broadcast servers. To date, such scheduling al-
gorithms have been aimed at optimizing broadcast
bandwidth allocation, and have been based on the as-
sumption that all data items are readily available in
the server's main memory. This approach ignores the
data management issues that arise when data items
need to be fetched from secondary storage or from re-
mote sites before they can be broadcast Such data
staging concerns, if ignored, can result in significant
degradation of the broadcast efficiency. In this paper
we propose three data staging solutions: opportunistic
scheduling, server caching, and prefetching, that are
closely integrated with the RxW broadcast scheduling
algorithm [AF98]. We then use a data broadcasting
testbed based on IP-Multicast to examine the perfor-
mance of these various solutions. Our results show that
data staging concerns are indeed crucial, and that the
hints provided by the RxW scheduling algorithm can
be effectively used to dramatically enhance the perfor-
mance of a large-scale on-demand broadcast system.

I. INTRODUCTION

A. Asymmetric On-Demand Broadcast

Advances in telecommunications enable new
asymmetric infrastructures for high speed data trans-
mission rates using satellite networks or cable televi-
sion networks [Dir96], [Web99], [Cyb99], [Hom98],
[Cha98]. The asymmetry is in the relative capacity
of the dedicated downlink (from server to clients)
and the dedicated uplink (from server to clients).

This work has been partially supportedby the NSF under grant
IR'-9501353. by Rome Labs agreement number F30602-97-2-
0241 under DARPA order number F078, and by research grants
from Intel and NEC.

20

Typically, the downlink bandwidth is much higher
than that of uplink so as to better match the high
response versus request data flow rate, e.g., a mouse
click of a URL request versus the whole contents of
the Web page. High-bandwidth links are becoming
available both on terrestrial cable networks and satel-
lite networks. For example, the Teledesic system is
expected to provide bandwidths of 155.52Mbps up to
1.244Gbps [Tel94]. Cable technology offers band-
widths of 36Mbps per channel for downstream, with
110 channels or more [Dat99].

Currently most infrastructures are based on unicast
data delivery method even though the network inher-
ently provides broadcast capabilities. With unicast
delivery a data item must be transmitted individ-
ually to each client that requests it. This results
in serious scalability problems with increases in the
client population. The client population meanwhile
is showing an enormous growth with the improve-
ments of interconnectivity. For instance, in 1998,
IntelliQuest [Int98] has reported 62 million Internet
users only in US. When we consider such large client
populations, the high downlink bandwidth is not suf-
ficient as a solution with unicast data transfer. In
contrast to unicast, broadcast-based delivery allows
a single transmission of an item to satisfy all clients
that require that item. Compared to traditional uni-
cast data transfer, broadcast can, therefore, be much
more efficient for disseminating information to large
client populations, especially for applications where
there exists a high degree of commonality among
client interests. It should be noted that broadcast
data transfer on these emerging infrastructures is al-
ways as good as or better than unicast data delivery,
since the downlink channel is a shared resource and
can only employ one transmission at a time, i.e., can
not parallelize the transmission on multiple connec-
tions as for point-to-point infrastructures. In this

paper we focus on broadcast-based data dissemina-
tion for on-demand data service using the emerging
infrastructures.

Fig. 1. Example Data Broadcasting Scenario

An example large-scale on-demand data broadcast
environment is shown in Figure 1. In this scenario,
clients send requests for data items to a proxy server
via an independent uplink channel. The server re-
ceives and aggregates those requests in a service
queue. Based on the received requests the server
chooses data items to broadcast, and sends them to
the clients over the shared downlink. Clients monitor
the broadcast to receive the items they are interested
in. This example depicts an environment similar
to what could be provided using a Direct Broad-
cast Satellite infrastructure such as Hughes Network
System's DirecPC [Dir96]. In this case, the uplink
is a terrestrial, wired network while the downlink
is a high-bandwidth satellite link. Other technolo-
gies are of course, also possible. For example, cable
technology is also being used for data broadcast-
ing [Hyb], and Internet multicast technology is im-
proving [mee92].

B. Broadcast Scheduling and Data Staging

A key design consideration in the development of
an on-demand data broadcast system is the schedul-
ing algorithm used by the server. Such an algorithm
aims to choose at each instance, the most benefi-
cial data item to be broadcast based on the unful-
filled requests that have been received from clients.
There has been significant work on the development
of on-line scheduling algorithms (e.g., [DAW86],
[Won88], [VH96], [ST97b], [AF98]). One main
objective of the more recent studies has been devel-
oping efficient algorithms with low overhead so that
the available broadcast bandwidth can be effectively

utilized. To date, however, this work has been based
on the assumption that all data items are readily avail-
able in the server's main memory to be broadcast'
and has largely been focused on optimizing broadcast
bandwidth allocation with the scheduling decisions

made.
In many practical applications, however, data may

not be available immediately when required by the
scheduler. There are many applications that involve
large amounts of data that cannot be cost-effectively
stored in main memory. Furthermore, in a wide-area
distributed system such as the WWW, the items to
be broadcast are likely to reside at a remote site. In
either case, data items must be retrieved and brought
into the server's main memory before they can be
broadcast. The need to fetch data from various loca-
tions produces large variance in service times, which
can destroy the performance of traditional scheduling
heuristics and can result in significant degradation of
broadcast efficiency. For this reason, we have in-
vestigated the coordination of broadcast scheduling
with the management of the data items to be broad-
cast. We refer to the process of making data items
available for broadcast as data staging.

C. Data Staging Solutions

In this paper, we propose and investigate three
complementary approaches to data staging. All three
approaches are based on a broadcast scheduling algo-
rithm called RxW, which we have previously shown
to be efficient, effective, and robust for a wide range
of workload characteristics [AF98], [AF99]. Intu-
itively, RxW broadcasts an item either if there are
many outstanding requests for that item, or if there
is at least one long-outstanding request for that item.
RxW is described in more detail in Section m. The
three data staging approaches we investigate are the
following:

• Opportunistic Scheduling: It is crucial to keep
the broadcast busy in order to fully exploit
the available downlink bandwidth. We some-
times broadcast sub-optimal, but memory resi-

'The only exception of which we are aware is an early study
by Dykeman et al. [DW88]. As discussed in Section Vm, this
work is based on a scheduling algorithm that is not suitable for
large systems, and includes solutions that require fine-grained
control over the location of data on magnetic disks.

21

dent data items, when the optimal page to broad-
cast is being brought to server's memory. We
investigate how to select such sub-optimal pages
with only small deviations from the optimal al-
location in the most efficient way.

• Caching: One obvious way to reduce the need
for fetching data items is to make the best use
of the available memory space on the server.
The key to successful caching for on-demand
broadcast servers is to retain those items that are
most likely to be scheduled. The RxW algorithm
can provide very good hints for identifying such
pages because it differentiates between popular
and not-so-popular items. We exploit this prop-
erty to make intelligent caching decisions.

• Prefetching: Another method to reduce access
latency is to predict which items will be broad-
cast in the near future and to bring them into
the cache before they are actually scheduled for
broadcast. We examine prefetching in an in-
tegrated caching/prefetching environment and
exploit hints provided by RxW to identify items
that are not cached but are likely to be broadcast
in the near future.

We have implemented a data broadcast testbed us-
ing IP-Multicast on a cluster of Pentium-based work-
stations running Windows NT. We use this prototype
to study the performance characteristics of the three
data staging approaches we propose. In our ex-
periment's, we concentrate mainly on disk-resident
data sets. The data staging approaches, however, are
equally applicable to data residing at remote sites.
In order to address this issue we also examine the
effectiveness of the approaches as the latency for
obtaining data is increased.

The remainder of this paper is organized as fol-
lows. In Section Ü we give a brief overview of

II. OVERVEW OF THE MECHANISM

In this section we briefly explain the way the three
data staging solutions interact with each other and
the role of the scheduling algorithm during the pro-
cess. As stated in the Introduction, previous work on
on-demand broadcast scheduling did not address the
issue of data staging. If data staging is completely ig-
nored, the server would simply apply the scheduling
algorithm and block on a cache miss (when the sched-
uled page is not in memory), waiting for the sched-
uled page to be faulted into memory. Obviously,
such blocking would cause a significant degradation
of broadcast bandwidth utilization, resulting in poor
system performance. Instead, the server should ini-
tiate an asynchronous request to fetch the missed
page. We will show that the implications of such
asynchronous requests are not as straight forward as
in the case of file systems.

We first explain the server mechanism where each
data staging solution is designed to complement each
other.

Service
Queue Server Cache

Fig. 2. Mechanism

The integrated mechanism is summarized in Fig-
ure 2. The user requests are queued at the server

lows, in xenon 11 « B- . — ~ - - using a single entry per page. Since once a page£
the mechanism applied for an integrated scheduling broadcast all requests on that page will be s^sfied
and data staging solution. In Section m we briefly we do not need to keep track of multiple entries for
present the RxW scheduling algorithm. This is fol- the same page in the service queue All information
[owed by the description of the prototype system usedbyme^hedulmgalgorito.smcorporatedin^
in Section IV and experimental environment used to this single entry and is updated for each ^ti°nd re-
evaluate our data staging techniques. Sections V, VI, quest made for the same page. InF.gure 2theserver
and VE present the data staging solutions that we continuously selects a page to *™d™\b™™
proposeändanalyzetheirperformance. Section VIÜ service queue, ^fe^1?1^^
discusses related work. Section IX presents our con- rithm is used, referred to as schedule in the figure^ In
elusions and plans for future research. this mode, if the scheduled page is m the cache (hit).

22

it is immediately broadcast. If the selected page is
not in the cache (miss), an asynchronous request is
initiated to fetch the page. This request is queued
among previously requested pages, as shown in the
miss queue. Then the page's entry is removed from
the service queue. Later, when a missed page arrives
in memory, it is broadcast as soon as the broadcast
channel is available. Meanwhile, as the fetch takes
place, the scheduler is run again for the next page
to broadcast and the original scheduling process is
repeated 2.

We place a limit on the number of outstanding
I/O requests in the miss queue in order to avoid
I/O thread thrashing. When this limit is exceeded,
we change the mode of scheduling, and apply the
opportunistic scheduling process, marked as oppor-
tunistic schedule. In this mode the server selects
only cache-resident pages for broadcast 3. That is,
if the original scheduling was to select a non-cache-
resident page, the opportunistic scheduler selects an
alternative page that can be broadcast because it is
available. Such pages that are selected not according
to the original scheduling algorithm, but according to
availability is shown as opportunistic pages in Fig-
ure 2. A key question for opportunistic scheduling
is which cache-resident pages to select for broadcast
during opportunistic scheduling mode. This issue
will be examined in detail in Section V.

Another question that we address in this paper is
the caching policy used by the server. That is, when a
missed page arrives at the memory how we manage
the server cache, so that the need to apply oppor-
tunistic scheduling is reduced. In Section VI we will
analyze the server caching policy that we particularly
propose for the RxW scheduling algorithm.

The final front of our attack to data staging prob-
lem is to bring the pages from the request queue to the
cache before they are actually scheduled. This pro-

2Another approach could be to generate multiple candidates
during the scheduling process in order to ensure there is at least
one page that can be broadcast immediately. This approach can
be useful especially for high-overhead scheduling algorithms.
In oui ca>e, since ihe RxW scheduling decision overheadis very
low, we take the liberty of rescheduling until a cache hit and
therefore use the most current queue state at each scheduling

decision.
'As soon as the number of outstanding requests drops back

below the limit, we switch back to the original scheduling mode.

cess is shown with prefetch in Figure 2. The pages
that are selected for prefetch are queued in a prefetch
queue and, when they arrive, are placed in a separate
part, of the cache, prefetch cache. Later, when they
are scheduled the page is moved to the normal cache
space accordingly. If a page that is being prefetched
is scheduled before it arrives at server's memory, the
page is marked to be treated as a missed page so that
it will be placed in the normal cache space and will
be broadcast as soon as it arrives. The decision on
which pages to prefetch is examined in Section VII.

Different combinations of data staging solutions
can yield interesting results for a broadcast environ-
ment as we will observe in Section V-B. In this paper,
we will apply an incremental design in the order of
opportunistic scheduling, server caching and server
prefetching. All three approaches are closely related
to the scheduling algorithm used.

m. THE RXW SCHEDULING ALGORITHM

In this section, we briefly describe the RxW
scheduling algorithm, which serves as the basis for
our integrated broadcast scheduling and data stag-
ing techniques. RxW is a practical, low-overhead
and scalable algorithm that provides excellent per-
formance across a wide range of settings and perfor-
mance criteria [AF98]. In this work, we assume that
the data items to be broadcast are fixed-length and,
thus, we refer to them as pages. Scheduling exten-
sions to handle variable length data have been devel-
oped elsewhere [VH97], [ST97a], [AM98]; similar
extensions for data staging are possible and consti-
tute a part of our future work. As described in [AF98]
the best overall scheduling quality can be obtained
by an even-handed treatment of hot (popular) and
cold (not-so-popular) pages. Based on this intuition,
RxW schedules a page either because it is very pop-
ular or because there is one outstanding request that
has waited a long time for that page. At each schedul-
ing decision the RxW algorithm chooses to broadcast
the page with the maximal RxW value where R is
the number of outstanding requests for that page and
W is the time that the oldest outstanding request for
that page has been waiting.

23

A. RxW: Implementation

Scheduling is performed at the server in an on-line
fashion. The server maintains a service queue that
contains a single entry for each page. Each request
entry carries all the information that is necessary for
making the scheduling decision, namely the number
of outstanding request(s) for the page (R) and the
arrival time of the oldest of those requests. The ar-
rival time is used to compute the waiting time (W) by
simply subtracting from current time at each schedul-
ing decision. The server maintains two sorted lists
threaded through the service queue: one based on
the number of outstanding requests (referred to as
the R-list) and the other on the waiting time of the
oldest request for that page (referred to as W-list). 4

R-list
(Requests)

W-list
(Wait)

max(R)

For any page i,
R, x W, > BOO

given R, < 50
W, > 600/50 !
W, > 16

Llmit(W)«=16

*] BO s

" i ?0
c i 45

d i 45

20

100 y mauifW)

90 X

53 z

41 d
: Limil(W) -16

. , • , '
\-'>')0',' a

■''/?'/<
b

'/*'/.'
n

Fig. 3. Pruning the Search Space

These two sorted lists are used to avoid an exhaus-
tive search of the service queue when searching for
the page with the maximal RxW value. The search
technique is depicted in Figure 3. The search starts
from the entry at the top of the R-list (the page with
the most outstanding requests) which corresponds to
the entry for page a in Figure 3. There are 80 out-
standing requests for page a and the oldest of those
pages have been waiting for 10 broadcast ticks (time
needed to broadcast a single page). At this point, the

«Maintaining these two sorted lists is fairly inexpensive; The
arrival of a request for a page for which there are currently
no outstanding requests results in the creation of a new service
queue entry where the R value is set to 1 and the arrival tune is
set to current time. This entry is appended to the tail of the R-list
and the W-list. Thereafter, the arrival of subsequent requests
for that page increments the R value of the entry, and relocates
the entry in the R-list, but does not impact the entry's position
in the W-list. Entries are removed from both lists when the
corresponding page is broadcast.

maximum R x W value is set to 800. The R value of
the following page on the R-list, page b, is then used
to compute a lower limit on the W value for any page
that can beat the current maximum RxW value.
Since the entries are sorted in descending order, we
know that all entries that are not yet scanned at this
point have an R value that is less than or equal to 50.
Therefore we know that any entry that could possi-
bly have a higher RxW value must have a W value
greater than 800/50. This computation enables us
to prune the W-list, i.e., we need not go any further
beyond this limit on the W-list.

Next, the service queue entry for the page at the top
of the W-list (the entry with the oldest outstanding
request) is examined and similarly, used to place
a lower limit on the R value. The algorithm then
keeps alternating between the two lists, raising the
limit on the other list as appropriate and thereby
pruning the search space further. The search stops
when the limit is reached on one of the lists. This
technique effectively shrinks the search space while
still guaranteeing that the search will return the page
with the maximum RxW value.

B. RxW.a: A Parameterized Approximation

The overhead of scheduling can be further reduced
by relaxing the requirement of broadcasting the page
with the highest RxW value. We have observed
that the maximal RxW valued page typically re-
sides at a much higher location than the one at which
the scheduling process ultimately stops; Most of the
search is done to guarantee maximality. Using this
observation, we developed an approximation-based
version of the algorithm. By varying a single param-
eter a, this approximation ranges in cost from that of
the maximal RxW algorithm defined above to a con-
stant time algorithm. The approximation algorithm
broadcasts the first page it encounters whose RxW
value is greater than or equal to a times the current
threshold value. The threshold is computed as the
running average of the RxW value of the last page
broadcast and the previous threshold. In cases where
no such page is found, the search proceeds within the
pruned search space, and the page with the highest
RxW value is broadcast. After each broadcast
decision, the threshold is updated accordingly.

The setting of the a parameter determines the

24

performance tradeoffs among average waiting time,
worst case waiting time, and scheduling overhead.
The smaller the value of the parameter, the fewer en-
tries are likely tobe scanned.5 For the experiments in
this paper we use RxW.90 (i.e., a = 0.9) as the broad-
cast scheduling algorithm. We have observed that
in our experimental test-bed configuration, RxW.90
provides a reasonable trade off between scheduling
quality (i.e., closeness to the optimal bandwidth al-
location) and scheduling overhead (i.e., the time it
takes to make a scheduling decision). It should be
noted, however, that we have tested our data staging
solutions using the full RxW algorithm and its ap-
proximations with different a values between 0 and
1. Even though the specific behaviour of the various
data staging approaches varies somewhat for differ-
ent approximation settings, the trends described in
this paper hold for all cases tested.

IV. PROTOTYPE

As stated in Section I, we have implemented
a testbed and used it to study our staging ap-
proaches. The prototype is implemented on a clus-
ter of pentium-based workstations running Windows
NT 4.0. Each machine has an Intel Pentium Pro
200MHz CPU and 64 MBs of main memory. One of
these machines is dedicated as the server. The pages
to be broadcast are all initially stored on the server's
local disk. The local disk of the server is a fast wide
SCSI 4GB Seagate ST32550.

Each machine has two independent Ethernet con-
nections: one for the uplink and one for the down-
link. Requests are sent on a 10Mbps uplink and
the server broadcasts pages on a 100 Mbps down-
link. The downlink employs UDP (Unreliable Data-
gram Protocol) for multicasting the data to all of
the workstations in the cluster using the IP-multicast
support provided with Windows NT 4.0. During ex-

5Typically the a parameter will be set to a value between 0
and 1. In the limit, setting a to oo results in the approximation
algorithm behaving identically to the maximal RxW algorithm.
At an extreme value of 0, the algorithm simply compares the top
entry from both the R-List and the W-list and chooses the one
with the highest RxW value. In this case, the complexity of
making a scheduling decision is reduced to 0(1), ensuring that
broadcast scheduling will not become a bottleneck regardless
of the broadcast bandwidth, database size, or woridoad inten-
sity [AF98J.

periments, the testbed is isolated from any external
network to avoid external network traffic.

The server has two main responsibilities: re-
quest processing (queuing new requests), and broad-
cast management (making scheduling decisions and
broadcasting pages). Two threads running on the
server perform these two jobs. To ensure that the
request arrival rate is fixed across all algorithms, the
request processing thread is given top priority. In our
prototype server a single CPU handles request pro-
cessing, and broadcast management. Therefore, the
performance numbers that we present include request
processing time. In order to minimize this request
processing time that appears in the performance re-
sults, we avoided using actual messages from the
clients over the uplink. Instead, we pre-generate the
request pattern for each experiment, and record it on
the server disk. The server then uses double buffer-
ing to read the requests such that it fills up one buffer
as it processes the requests in the other buffer. We
monitored the system to verify that the server always
finds the second buffer ready when it consumes the
requests from the first buffer. All algorithms evalu-
ated experience exactly the same amount of request
processing. File buffering of the operating system
is disabled throughout the experiments so as not to
interfere with the data staging operations.

In the experiments, we first warm up the server
cache and then make sure equilibrium is reached be-
fore taking measurements. Equilibrium occurs when
the number of outstanding requests in the system sta-
bilizes, i.e., the request satisfaction rate converges to
the request arrival rate. We use Little's Law [Tri82]
to evaluate the average waiting time using the logical
service queue length 6.

V. OPPORTUNISTIC SCHEDULING

We have introduced the mechanism we use to ap-
ply integrated data staging solution in Section Ü.
Recall that we had a limit on the number of outstand-
ing requests and we were switching to opportunistic
scheduling mode when this limit is reached, so that
only cache-resident pages will be scheduled. In this

'Recall that the length of the physical queue maintained at the
server is limited by the number of pages in the database and is
much smaller than the logical queue length, i.e. the number of
outstanding requests.

25

section we describe the algorithms we apply for de-
ciding on which cache-resident page to broadcast in
order to keep the broadcast channel utilized in the
opportunistic scheduling mode. We then evaluate
these algorithms in Section V-B.

A. Opportunistic Scheduling Algorithms

We have developed three algorithms for choos-
ing cache-resident pages for broadcast during op-
portunistic scheduling mode. The first two of these
require that scheduler be aware of each page's avail-
ability. This requires, the service queue entries main-
tained by the RxW be extended with a flag that indi-
cates whether or not the corresponding page is cache-
resident. This flag is set when the page is brought
into cache and cleared when the page is replaced
from the cache. Following is the description of the
three approaches:

. Best Cache Resident (OS-BCR): In this algo-
rithm, we run the scheduler as in the original
case. However, the maximum R x W value and
the limits on either queue are updated only for
the cache resident pages. As a result, we keep
track of the best-cache-resident page according
to the scheduling algorithm. Note that when
we apply opportunistic scheduling, only cache-
resident pages are broadcast and therefore only
the corresponding entries are deleted from the
service queue and then rebuilts up from the bot-
tom of the lists. As a result, cache-resident pages
appear at a lower level than they normally would
be in the original scheduling mode. Therefore
we expect more number of entries to be scanned
during the search of opportunistic scheduling,
since°no matter how high RxW values we ob-
serve on non-cache-resident pages, the search
stops only when the best cache-resident pages
satisfies the stopping condition.

. Earlier Stop (OS-ES): This algorithm aims at
searching less number of entries while making
the opportunistic scheduling decision. It sim-
ply runs the scheduler as usual, but keeps track
of two broadcast candidates: best cache-resident
page and overall-best page (including pages that
are not cache-resident). The search stops when
the overall-best page meets the stopping condi-
tion, rather than the best cache-resident page.

We refer to this case where the scheduler stops
as if all pages are in the cache as the original
application of the algorithm. At the end of
this original application, the best cache-resident
page (among the ones searched upto this point),
if any, is selected for broadcast. If no cache-
resident page is encountered at this point, the
search continues until the first cache-resident
page. Therefore less number of entries need
to be scanned during the search using OS-ES.
Note that the algorithm does not guarantee that
the best cache-resident page (among all that are
available) according to the scheduling criteria is
broadcast.

. Scan Cache (OS-SC): The intuition behind the
algorithm is to minimize the overhead involved
in selecting a cache-resident page to broadcast.
This algorithm does not use the RxW scheduling
algorithm except for the initial check to see if
the original application yields a cache hit. Oth-
erwise it basically cycles through the pages in
the cache using a pointer, referred to as next-
ToBroadcast, initially set to the page at the top
of the cache. The algorithm simply broadcasts
the page pointed by nextToBroadcast if there are
any outstanding requests for this page. Other-
wise the pointer is advanced to the next page
in cache until one with outstanding requests is
found and broadcast. After the broadcast, the
pointer is advanced to the next page in order to
determine the broadcast candidate in the next
opportunistic scheduling. To avoid unexpected
behavior, we also advance the pointer when the
pointed page is replaced in the cache.

B. Opportunistic Scheduling: Evaluation

In this section we experiment our approaches on
the test-bed we have implemented as described in
Section IV. We first describe the workload we ap-
plied in this and subsequent experiments. We then
report the results of the experiment.

The workload we used for the majority of the ex-
periments is based on a Zipf distribution with 6 set
to 1 [Knu81]. The Zipf distribution is such that

Pi- ^EST
26

where p, is the probability of accessing page i, N is
the size of the database and 6 is the skewness parame-
ter. The database consists of 10000 pages. All pages
are 16K and disk-resident. At most 100 concurrent
asynchronous I/O requests are allowed during the
experiments. The cache size is varied between 5%
and 100% of the database. LRU cache replacement
policy is used throughout these experiments. The
approaches we have developed are aimed at large-
scale systems with many thousands of clients. We,
therefore, stress-test our prototype at an arrival rate
of 1000 requests/sec. We have also tried lower and
higher rates and we observed similar results for op-
portunistic scheduling algorithms. We describe the
effects on other data staging approaches in corre-
sponding sections. We now proceed with the evalu-
ation of opportunistic scheduling.

As already discussed in Section V, blocking on
a cache miss is not favorable at all. To see how
much of a performance penalty such ignorance of the
data staging problem would bring, we compare the
performance of opportunistic scheduling algorithms
against such a case where data staging is completely
ignored. Figure 4 shows the performance results
of this experiment. In this experiment, the average
waiting time is measured as the cache size increases
from 5% of the database to 100% of the database.
In Figure 4 SYNCH refers to the case where the
server issues a synchronous I/O request for cache
misses and stalls until the required page is broadcast.
As expected opportunistic scheduling (the bottom
most tree curves curves) provides orders of magni-
tude improvement across all cache sizes. For in-
stance, at 4000 page cache size, all opportunistic
scheduling approaches have 17 times better perfor-
mance than SYNCH. The improvement obtained by
opportunistic scheduling is due to the better band-
width utilization. For instance, at 4000 page cache
size opportunistic scheduling uses 98% of the band-
width that could be used (if all pages were in the
cache). In contrast SYNCH uses only 22% of the
bandwidth that could be used. Note that the relative
bandwidth usage would be even more significant for
latencies higher than secondary storage, i.e., when
data needs to be retrieved from remote sites. All
curves converge at 10000 page cache size, since all
pages are in the cache and there is not any cache miss

that will differentiate the behavior. At this point the
performance is fully determined by the scheduling
algorithm used which is the same for all three.

Next we take a closer look at the opportunistic
scheduling algorithms. Figure 5 zooms up the bot-
tom left comer of Figure 4. Here, we see at OS-SC
gives the best performance across all ranges. OS-ES
gives the worst performance across all ranges ex-
cept for 500 page cache. All algorithms converge
at 4000 page cache, because then the asynchronous
miss queue is not full and therefore opportunistic
scheduling is not applied for any algorithm. In the
figure, we observe a significant performance differ-
ence between the algorithms at 3000 page cache, i.e.,
OS-SC is 2.3 times better than OS-ES at this point.
The performance differences come from two fac-
tors: the broadcast efficiency and the broadcast error
made. The trade off between these factors define the
performance of an algorithm.

For instance, OS-ES's poor performance is mostly
due to the scheduling error made, even though OS-
ES has a quite good broadcast efficiency. Figure 6
plots the bandwidth usage for the three algorithms
measured for the same experiment. The bandwidth
usage shown does not include any accompanying
data flow information, such as UDP packet head-
ers etc. Bandwidth is measured as the total num-
ber of data bytes broadcast per second. Also note
that the maximum bandwidth usage is limited by
59Mbps, even if all pages are in the cache due to
NT system overhead. In other words, OS-ES can
use at least 85% of the available bandwidth in the
whole range of measured cache sizes. On the other
hand, OS-ES results in a very poor broadcast sched-
ule. It actually converges to always selecting the
cache-resident page with the most outstanding re-
quests during opportunistic scheduling mode. This
kind of over favoring hot pages has already been
shown to provide a poor performance [AF98]. Fig-
ure 7 plots the bandwidth allocation error measured
during the experiment. The bandwidth allocation
error metric is computed by comparing the resulting
bandwidth allocation generated by the algorithm ver-
sus the optimal bandwidth allocation that is defined
in [DAW86]. The optimal allocation must be done
in relative square root ratios of page access proba-
bilities. We measure the rate at which each page is

27

2000 4000 6000

cache »Ize (pages)

8000 10000

Fig. 4. Average Waiting Time

ax iooo iaoo sow 2soo aooo
each« sfca (paoat)

3600 «X» 4900 SO00

Fig. 5. Average Wait - Opportunistic Scheduling Only

500 »X ,» » B» «"» » « "»
cache alze (pages)

1000 2000 3000

cache size (pages)

4000 5000

Fig. 6. Scheduling Efficiency

broadcast and average the percentage of the absolute
error made when compared to this optimal case. As
shown in Figure 7 OS-ES results in the highest band-
width allocation error among all three algorithms.

Going back to Figure 5, OS-BCR performs bet-
ter than OS-ES since, OS-BCR makes better broad-
cast decisions. As shown in Figure 7 OS-BCR
makes significantly less error when compared to OS-
ES. Therefore OS-BCR performs better than OS-
ES, even though OS-BCR has worse broadcast effi-
ciency, i.e., slower, than OS-ES since it scans more
service queue entries to decide on the cache-resident
page to broadcast. This is due to the fact that the
scheduling overhead is increased significantly when
the scheduler is restricted to choose a cache resident
page. For instance, the number of entries that need
to be scanned increases 2000 fold for a cache size of
500 pages when compared to OS-ES. In Figure 6 OS-
BCR is shown to be the most inefficient algorithm

Fig. 7. Scheduling Error

among all three.
Finally, OS-SC gives the best performance in Fig-

ure 5, because it wins on both factors. OS-SC has the
minimum overhead among all three algorithms, and
therefore yields the best bandwidth usage as shown
in Figure 6. In addition, OS-SC yields a pretty good
broadcast schedule. The cache-resident pages that
are broadcast during opportunistic scheduling are
only a small subset of the pages that are of inter-
est to the client population, and therefore a uniform
broadcast of pages with outstanding requests does a
pretty good job of scheduling in the overall.

These results demonstrate that broadcast efficiency
is just one of many aspects that contribute to perfor-
mance in a real system, and that the sum of the effects
of these different components are what determine
overall performance. As described in [AF98], the
trade off between different components was in fact
the motivation behind the approximate versions of

28

RxW. Opportunistic scheduling solves the broadcast
efficiency problem when compared to synchronous
requests, however it converts this efficiency problem
to broadcast error problem.

VI. SERVER CACHE MANAGEMENT FOR

BROADCAST-BASED SERVERS

For a highly skewed distribution such as the Zipf,
RxW will broadcast individual hot pages more than
their colder counterparts, but in the overall, signifi-
cant bandwidth will be given to cold pages. In our
experiments we have observed that approximately
1/3 of the bandwidth is expended broadcasting the
top 10% hottest pages, with the remaining 2/3 go-
ing to the colder pages. This implies that for small
cache sizes, LRU is not very useful. LRU has the
well-known property that once a page is access -
broadcast in our case - it will be placed at the top of
the LRU stack and then it has to travel all the way
down before it will be replaced from the cache. This
implies that for small cache sizes: 1) Cold pages will
always result in a cache miss when LRU is employed;
since the low frequency of cold page broadcasts will
make them the least recently used page (they travel
all the way to the tail of LRU stack) before they are
scheduled again. 2) It is not only the cold pages, but
also the hot pages that will suffer in this case; since
the high number of cold pages being broadcast can
force hot pages to be flushed off the cache before
they are scheduled for broadcast again.

Fortunately it is possible to replace the server
cache replacement policy with one that better
matches the broadcast scheduling algorithm used.
Alternatives to LRU that avoid the problem of cold
pages replacing hot pages have been proposed (e.g.,
LRU-K [OOW93] and 2Q [JS94]). These policies
maintain past reference history for items that are no
longer in the cache and use it to distinguish cold
pages from hot ones. In our environment, however,
we have a unique advantage, namely, that the RxW al-
gorithm already provides valuable information that
can reliably be used to distinguish hot pages from
cold, without the need to store additional access his-
tory. In the following subsection we investigate the
technique that uses this information.

A. LRU With Love/Hate Hints (LH)

In this section we describe the algorithm that we
use to improve server's cache management. Recall
that RxW aims to provide a balanced treatment of hot
and cold pages. More explicitly, RxW broadcasts a
page either if it is popular enough or if it has been
waited for long enough. Hot pages are more likely
to be broadcast because they have a large number of
outstanding requests and hence, will be high on the
R-list when they are scheduled for broadcast. On the
other hand, cold pages are likely to have accumu-
lated some waiting time before they are scheduled
and therefore will be high on the W-list. Thus, due
to the data structure used by RxW it is possible to
distinguish between the popularity of pages and treat
these pages accordingly. Pages that appear to be hot
at the time they are chosen for broadcast are tagged
with a "love" hint and placed at the top of the LRU
stack, while those that appear to be cold are tagged
with a "hate" hint and put at the bottom of the LRU
stack where they are likely to be chosen as replace-
ment victims. We refer to this extension of LRU as
'LRU-LH" or simply "LH". With 'LH" we expect
the cache to converge to a state where it only keeps

popular pages.
To decide if a page chosen for broadcast should be

considered hot (i.e., marked with love-hint) the page
must meet the following tests:

1. In the scheduler's alternating search of the R
and W lists the page must be encountered on the
R-list before it is encountered on the W-list.

2. The page must appear in the top hot range pages
of the R-list, and there must not be any pages
with the same number of requests that lie beyond
this range.

The first test ensures that the page is higher on the R-
list than on the W-list. This requirement is satisfied
by simply updating the current maximum RxW with
a only a larger value, excluding equal values. As
a result once a page is selected on the R-list it is
guaranteed that it has not been scanned on the W-list
yet and the page is a candidate for a hot page. The
second test aims to reserve the cache for the hottest
pages that can fit. The special handling for "ties" is
intended to avoid over-committing the cache in the
case that many pages have the same R value. The
size of the hot range is set to be a fraction of the

29

size of the cache and the number of outstanding page
requests as

cacheSize x
entryCnt

dbSize

the hit rate almost as much as PCACHE does. This
proves the ability to distinguish between hot pages
and cold pages through the use of the RxW algo-
rithm. Due to the increased hit rate, opportunistic
scheduling is used less frequently and the optimal
decision made by RxW.90 is realized more often.
Going back to Figure 8 we see all algorithms con-
verge for hit rates over 0.5. 8 This performance
is obtained when the majority of the missed pages
have only one or two requests pending and those re-
quests have already accumulated a high waiting time
(around 4 seconds). Therefore an additional disk I/O

In this section we investigate possible improve- ^^ dQes nQt impact ±t overall performance a
ments by more suitable server cache management ^ ^ smaU penaUy of cache wisses is easny paid
policies. The workload parameters are as described ^ ^ ^^ Q{ opportunistic scheduling,
in Section V-B. In this experiment, we take the best _. . w _r *-.—„ c ic tixt>i ^^

where entryCnt is the total number of pages queued
for broadcast at the time of scheduling decision, and
dbSize is the total number of unique pages requested
by the client population 7.

B. Caching: Evaluation

In this section we investigate possible improve-

opportunistic scheduling algorithm of Section V-B,
namely OS-SC and replace the cache replacement
policy of LRU with LH. To evaluate the benefits of
LH we compare it with LRU and an idealized (i.e.,
impractical) algorithm called PCACHE. This latter
algorithm uses perfect knowledge of the data access
distribution and keeps the pages with the highest ac-
cess probabilities in cache at all time. PCACHE
demonstrates the ideal case LH is aiming at converg-
ing to.

We use the same workload as described in Sec-
tion V-B for this experiment. The average waiting

The main result of Figure 8 is that with LH a
cache size of 20% of the database is enough for
perfect performance. This suggests that LH needs
half the cache size LRU would need for this skewed
workload. This improvement is especially impor-
tant when we consider large database sizes being
accessed with a skewed distribution.

VTJ. REDUCING I/O LATENCY

The final front of our attack to data staging problem
is to bring the pages to the cache before they are
actually scheduled for broadcast. The trick here is tion V-B ior mis expcimicm. *i»» »*w«-fe~ ••——o •«.»—»v

Hmeforth=threecachtatpondes_USho»,inH8 »^»J^J^«~£E
caching, we exploit properties of the RxW algorithm
to make such predictions.

ure 8. Note that, the curve labeled as LRU is the
same curve labeled as OS-SC in Figure 5. In all
three approaches OS-SC alternative is being used for
opportunistic scheduling. On the x-axis, the cache
size is varied up to 5000 pages, and the y-axis shows
the average waiting time for the algorithms. As can
be seen in the figure, LRU provides the worst per-
formance across the entire range of cache sizes. LH
performs significantly better than LRU. For instance, ^ ^
at 2000 page cache, LH is 2.8 times better than LRU. ^^ ft cjm change on]y when a page is broadcast.
LH is almost as good as PCACHE across the entire fo cQntrast ^ top of ^ R.iist which is much more
range. This suggests that LH is very successful in ^^ R ^ change for eveiy „^st that arrives
converging to the behavior of keeping the cache with ^ ^ ^^ ^^ ^ predictjon of pages that are
the top most popular pages. This observation« fur- ^^ ^ ^ chQstn due t0 ^^ w vaiue (j.e., cold

A. Prefetching

We focus our prefetching efforts on predicting
which cold pages are likely to be chosen for broad-
cast. There are two reasons behind this choice. First,
prefetching requires prediction based on the current
state of the service queue. The top of the W-list is

ther supoorted bv the hit rates shown in Figure 9 for
the same experiment. We observe that LH improves

7In general, if the database size is not known a-priori (e.g..
when pages reside on remote sites), an estimate by observing the
pages requested from the server can be used.

pages) is more reliable than for hot pages. Second,
the hit rate on cold pages is expected to be very low,

»Note mat the hit rates in Figure 9 are not yet at 1 since the
cache can keep only half of the pages in the database.

30

1000 2000 3000

cache size (pages)

4000 5000

Fig. 8. Average Wait Time

1000 2000 3000

cache size (pages)

4000 5000

Fig. 9. Hit Rate

and the LH caching policy aims at effectively keep-
ing hot pages in cache. We apply a division of labor
between the two approaches used in an integrated de-
sign. Caching has the responsibility of keeping track
of the pages at the top of the R-list, and prefetching
has the responsibility of keeping track of the pages
at the top of the the W-list.

The main idea of prefetching is to make sure that
all pages within a defined range at the top of the W-list
are either already in the cache or are in the process of
being prefetched. The size of the range is a parameter
called prfWindow. A buffer of prfWindow pages
is reserved in the cache (i.e., taken out of the LH-
managed space) and background threads are used to
prefetch pages into this buffer. When a page from
the prefetch buffer is broadcast (and hence, its entry
removed from the W-list), the prefetch of a new page
is initiated. If a page is scheduled for broadcast while
it is in the process of being prefetched, the page is
broadcast as soon as it arrives.

B. Prefetching: Evaluation

In this experiment we evaluate the effectiveness
of prefetching using the workload as described in
Section V-B. Figure 10 shows the average wait time
with prefetching (labeled "PRF" on the graph) and
without (labeled "LH"). For both cases, Scan Cache
Opportunistic Scheduling (OS-SC) and LRU with
Love/Hate hints (LH) is being applied. The differ-
ence comes from the use of prefetching. The to-
tal cache size including the buffer for the pages to
p. efetch is varied from 500 to 5,000 pages. These re-
sults were generated with a prfWindow of 250. This

31

value is chosen according to our experiments vary-
ing the prefetch window at the cache size of 2000
pages.

In the first experiment, we apply data staging
to disk-resident data. The limited effectiveness of
prefetching in this case can be seen in Figure 10. In
Figure 10 we see that when prefetching is added to
LH there is little or no improvement when compared
to LH alone. This behavior arises, since the average
wait for pages is much higher than the time it takes
to read a page from disk (even if the disk is highly
utilized). The cost of the I/O does not significantly
contribute to the time it takes for a user request to
be satisfied, thus prefetching is not very helpful in
reducing the latency of secondary storage. The two
curves curverge when the hit rate of the server is al-
ready above the tolerable limit of 0.5 as described in
Section VI-B, i.e., when additional disk I/O does not
impact the waiting time significantly.

In Figure 11, we plot the results for higher latencies
for page retrieval. In this case we use a cache size of
2000 pages and we gradually increase the latency of
retrieving pages. As the latency increases we see a
great advantage coming from prefetching. At around
1 second, PRF results 95% improvement in terms of
the waiting time compared to that would be achieved
when prefetching is not used. The performance boost
comes from the improved scheduling quality when
prefetching is used. We observe the bandwidth allo-
cation error curves for the same experiment increase
in a similar behaviour as shown for average waiting
time. The two curves converge at latencies around
25 seconds, where latency becomes the dominating

factor.

Fig. 10. Average Wait (Disk Resident Data)

VIII. RELATED WORK

As stated previously, there has been much work
on developing scheduling algorithms for on demand
data broadcasting [DAW86], [DW88], [Won88],
[VH96], [ST97b], [AF98] and that all of this work
with the exception of Dykeman et al. [DW88] ig-
nored the issue of data staging. The Dykeman et
al. work was performed assuming an environment
that differed substantially from the one studied here.
First, the context of that work was Teletext sys-
tems, which had much lower bandwidths and hence,
much smaller databases to broadcast. Thus, the so-
lutions in that earlier paper used a very expensive
scheduling and cache replacement algorithm that
would not scale for the large-scale systems with very
large databases. Second, some of the approaches
in [DW88] were based on assumptions about detailed
control over disk devices, that are not applicable to
today's commodity disk drives and controllers, and
do not address the problem of data residing on re-
mote sites. Finally, the Dykeman et al. study was
done using simulation so much of the overhead and
contention that arises in a real system was not consid-
ered. Despite these differences, this study provides a
powerful insight to pioneer data staging problem and
our results have some common conclusions: speed-
ing up the rate at which requested pages are retrieved
is of top priority for performance even if this is at the
expense of not being able to retrieve the page with
the highest priority immediately.

The result that the optimal broadcast bandwidth

Fig. 11 • Average Wait varying Latency

allocation is in proportion to the ratios of the square
roots of the page access probabilities was shown
in [DAW86] and [AW87]. Recall that this prop-
erty of broadcast plays a key role in our result that
low overhead Opportunistic Scheduling approaches
can have a poor performance due to poor bandwidth
utilization.

In the more general context, data staging has also
been studied for multimedia systems. Ozden et
al. [ORS96] studied buffer replacement algorithms
for multimedia storage systems that exploit the large
file sizes and sequential access found in many mul-
timedia applications. Aggarwal et al. [AWY96]
have studied scheduling algorithms for Video-On-
Demand systems, and proposed a heuristic that uses
the number of outstanding requests per page and the
broadcast history followed up per page. This study
also ignores the data staging problem. In [FD95],
prefetching was shown to be an effective perfor-
mance enhancer for video-on-demand systems. The
success of prefetching in this study, however, is
mainly based on the sequential access of video files.
Prefetching has been used together with caching
to reduce access latencies in many other contexts.
For example, Patterson et al.'s informed prefetching
study [PGG+95] has shown that prefetching using
hints from applications is an effective way of ex-
ploiting 10 concurrency. As stated previously, while
prefetching is also helpful in the on-demand broad-
cast setting especially for high latencies, the need
for it is obviated for secondary storage latencies by
the ability to do background "post-fetching" with lit-
tle penalty in additional path length for page access

32

and little degradation of the quality of the broadcast

schedule.

IX. CONCLUSION

We have presented a data delivery scheme that is
especially good for large client populations with a
high overlap in interest. In this scheme, the server
receives individual pull requests from clients and
broadcasts the results. We have shown that a real im-
plementation with a large database and a fast broad-
cast channel must take data staging concerns seri-
ously in order to achieve reasonable performance.

Our basic approach integrates broadcast schedul-
ing and data staging in a novel way. We use love/hate
hints derived from the scheduling data structures to
guide the caching of popular pages. Beyond that, we
have shown that, while it is tempting to use prefetch-
ing to improve the performance of the cache, it is
more effective to use a "post-fetching" technique
that we call opportunistic scheduling, for secondary
storage latencies. The best results , for secondary
storage latencies occur when we simply keep the
broadcast filled with decent items instead of worry-
ing about sending the best items which might be hard
to obtain because of staging problems. For higher
latencies, however, prefetching proved to be very

effective.
We have implemented a prototype system on Win-

dows NT 4.0 to show that the data staging algorithms
that we propose dramatically reduce the penalty of
data retrieval latency.

In the future, we plan to focus more on wide-
area systems in which the data items of interest may
be located on other machines which, like a disk,
introduce additional latency. We will also look at
problems introduced by variable length data items
and by stream-oriented data with ordering constraints

(e.g., video).

REFERENCES

[AF98] D. Aksoy and M. Franklin. Scheduling for large-
scale on-demand data broadcasting. In Proceedings
of IEEE INFOCOM, March 1998.

[AF99] D. Aksoy and M. Franklin. RxW: A scheduling
approach to large scale on-demand broadcast. In
Conditionally accepted for IEEE/ACM Transactions
on Networking, 1999.

[AM98] S. Acharya and S. Muthukrishnan. Scheduling on-
demand broadcasts: New metrics and algorithms.

[AW87]

[AWY96]

[Cha98]

[Cyb99]

[Dat99]

[DAW86]

[Dii96]

[DW88]

[FD95]

[Hom98]

[Hyb]

Dnt98]

[JS94]

[Knu81]

[mee92]

[OOW93]

[ORS96]

33

In Proc. of Fourth Annual ACM/IEEE International
Conference on Mobile Computing and Networking
(Mobicom), Dallas, TX, 1998.
M. H. Ammar and J. W. Wong. On the optimal-
ity o cyclic transmissions in teletext systems. IEEE
Transactions on Communications,35(l):68-73, De-
cember 1987.
C. C. Aggarwal, J. L. Wolf, and P. S. Yu. On opti-
mal batching policies for video-on-demand storage
servers. In The Third IEEE International Confer-
ence on Multimedia Computing and Systems, Hi-
roshima, Japan, June 1996.
ISP Channel. Your high speed connection to the
internet, http://www.ispchannel.com, 1998.
CyberStream. High speed internet access; Cyber-
Stream on VSAT. http://speedus.com, 1999.
Cable Data. An information service of kinetic strate-
gies inc. cabledatacomnews.com, 1999.
H.D. Dykeman, M. Ammar, and J.W. Wong.
Scheduling algorithms for videotex systems un-
der broadcast delivery. In IEEE International
Conference on Communications, pages 1847-1851,
Toronto, Canada, 1986.
Hughes network systems, direcpc home page.
http://www.direcpc.com, 1996.
H.D. Dykeman and J.W. Wong. A performance
study of broadcast information delivery systems. In
Proc. IEEE Infocom, New Orleans, LA, 1988.
C. S. Freedman andD. J. DeWitt. The spiff) scalable
video-on-demand system. In SIGMOD, San Jose,
CA, 1995.
©Home
network home page. URL: http://www.home.net,

February 1998.
Hybrid. High-speed data access for teleworkers.
http://www.hybrid.com.
IntelliQuest. Information solutions for global tech-
nology marketing, http://www.intelliquest.com,

1998.
T. Johnson and D. Shasha. 2Q: A Low Overhead
High Performance Buffer Management Replace-
ment Algorithm. In Proceedings of the 20th In-
ternational Conference on Very Large Data Bases,
pages 439-450, Santiago de Chile, Chile, Septem-
ber 1994.
D. Kmith. The art of Computer Programming -
Volume III. Addison-Wesley, 1981.
IETF meet"
ing. Multicast backbone. http://info.brl.mil/ARL-
Dircctorates/ASHPOHPCD/MBONE/, 1992.
E J. O'Neil, P.E. O'Neil, and G. Weikum. The LRU-
K Page Replacement Algorithm For Database Disk
Buffering. In Proceedings of the 1993 ACM SIG-
MOD International Conference on Management of
Data, pages 297-306, Washington, DC, may 1993.
B. Ozden, R. Rastogi, and A. Silberschatz. Buffer
replacement algorithms for multimedia storage sys-

terns. In IEEE International Conference on Multi-
media Computing and Systems, June 1996.

[PGG+ 95] R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodol-
sky, and J. Zelenka. Informed prefetching and
caching. In Proc. of the 15th Symp. On Operating
System Principles, Dec. 1995.

[ST97a] C.J. Su and L. Tassiulas. Broadcast scheduling
for distribution of information items with unequal
length. In In Proc. 31th Conf. on Information Sci-
ences and Systems (CISS'97), Kobe, Japan, March
1997.

[ST97b] C.J. Su and L. Tassiulas. Broadcast scheduling for
information distribution. In Proc. 1EEE1NFOCOM,

1997.
[Tel94] Teldesic corporation with the federal communica-

tions commission. Application of Teledesic Cor-
poration for a Low Earth Satellite System in the
Domestic and International Fixed Satellite Services,

March 1994.
[Tri82] Kishor S. Trivedi. Probability and Statistics with

Reliability, Queueing and Computer Application.
Prentice-Hall Inc, 1982.

[VH96] N.H. Vaidyaand S. Hameed. Data broadcast in assy-
metric wireless environments. In Proc. of Workshop
on Satellite-based Information Services (WOSB1S),
New York, November 1996.

[VH97] N.H. Vaidya and S. Hameed. Log-time algorithms
for scheduling single and multiple channel data
broadcast. In Proc. of Workshop on Satellite-based
Information Services (WOSBIS), Budapest, Hun-
gary, September 1997.

[Web99] Cable Web. An information service of kinetic strate-
gies inc. cableweb.com, 1999.

[Won88] J.W.Wong. Broadcast delivery. Proc. of IEEE,
76(12): 1566-1577, December 1988.

34

Appendix C

Research in Data Broadcast and Dissemination

35

Research in Data Broadcast and Dissemination

Demet Aksoy2, Mehmet Altinel2, Rahul Böse1, Ugur Cetintemel2,
Michael Franklin2, Jane Wang1 and Stan Zdonik1

1 Department of Computer Science, Brown University, Providence, RI 02912 _
2 Department of Computer Science, University of Maryland, CoUege Park, MD 20.42

1 Introduction

The proliferation of the Internet and intranets, the development of wireless and
satellite networks, and the availability of asymmetric, high-bandwidth links to
the home, have fueled the development of a wide range of new "dissemmation-
based-' applications. These applications involve the timely distribution of data
to a large set of consumers, and include stock and sports tickers, traffic infor-
mation systems, electronic personalized newspapers, and entertainment delivery.
Dissemination-oriented applications have special characteristics that render tra-
ditional client-server data management approaches ineffective. These include:

- tremendous scale.
- a high-degree of overlap in user data needs.
- asymmetric data flow from sources to consumers.

For example, consider a dissemination-oriented application such as an elec-
tion result server. Typically, such applications are implemented by simply posting
information and updates on a World Wide Web server. Such servers, however,
can and often do become overloaded, resulting in the inability for users to access
the information in a timely fashion. We argue that such scalability problems are
the result of a mismatch between the data access characteristics of the applica-
tion and the technology (in this case, HTTP) used to implement the applica-
tion. HTTP is based on a request-response or RPC, unicast (i.e., point-to-point)
method of data delivery, which is simply the wrong approach for this type of
application.

Using request-response, each user sends requests for data to the server. The
large audience for a popular event can generate huge spikes in the load at servers,
resulting in long delays and server crashes. Compounding the situation is that
users must continually poll the server to obtain the most current data, resulting
in multiple requests for the same data items from each user. In an application
such as an election server, where the interests of a large part of the population
are known a priori, most of these requests are unnecessary.

The use of unicast data delivery likewise causes problems in the opposite
direction (from servers to clients). With unicast the server is required to respond
individually to each request, often transmitting identical data. For an application
with many users, the costs of this repetition in terms of network bandwidth and
»erver cycles can be devastating.

36

To address the particular needs of dissemination-based applications, we are
developing a general framework for describing and constructing Dissemination-
Based Information Systems (DBIS). The framework incorporates a number of
data delivery mechanisms and an architecture for deploying them in a networked
environment. The goal is to support a wide range of applications across many
varied environments, such as mobile networks, satellite-based systems, and wide-
area networks. Bv combining the various data delivery techniques in a way that
matches the characteristics of the application and achieves the most efficient
use of the available server and communication resources, the scalability and
performance of dissemination-oriented applications can be greatly enhanced.

In this paper, we provide an overview of the current status of our DBIS
research efforts. We first explain the framework and then describe our initial
prototype of a DBIS toolkit. We then focus on several research results that have

arisen from this effort.

2 The DBIS Framework

There are two major aspects of the DBIS framework.3 First, the framework
incorporates a number of different options for data delivery. A taxonomy of
these options is presented in Section 2.1 and the methods are further discussed in
Section 2.2. Secondly, the framework exploits the notion of network transparency,
which allows data delivery mechanisms to be mixed-and-matched within a single
application. This latter aspect of the framework is described in Section 2.3.

2.1 Options for Data Delivery

We identify three main characteristics that can be used to describe data delivery
mechanisms: (1) push vs. pull; (2) periodic vs. aperiodic; and (3) unicast vs. 1-
to-N. Figure 1 shows these characteristics and how several common mechanisms

relate to them.

Client Pull vs. Server Push - The first distinction we make among data
delivery styles is that of "pull vs. push". Current database servers and object
repositories support clients that explicitly send requests for data items when
they require them. When a request is received at a server, the server locates
the information of interest and returns it to the client. This request-response
style of operation is pull-based — the transfer of information from servers to
clients is initiated by a client pull. In contrast, push-based data delivery involves
sending information to a client population in advance of any specific request.
With push-based delivery, the server initiates the transfer.

The tradeoffs between push and pull revolve around the costs of initiating
the transfer of data. A pull-based approach requires the use of a backchannel for

3 Parts of this section have been adapted from an earlier paper, which appeared in the
1997 ACM OOPSLA Conference [Fran97].

37

Pull Push

Aperiodic Periodic Aperiodic Periodic

Unicast 1-to-N
request/
response

request/
response
w/snooping

Unicast 1-to-N
| polling polling

w/snooping

Unicast 1-to-N
e-mailing
lists

publish/
subscribe

publish/
subscribe

Unicast 1-to-N
e-mail lisi
digests

broadcast
disks

Fig. 1. Data Delivery Characteristics

each request. Furthermore, as described in the Introduction, the server must be
interrupted continuously to deal with such requests and has limited flexibility
in scheduling the order of data delivery. Also, the information that clients can
obtain from a server is limited to that which the clients know to ask for. Inus,
new data items or updates to existing data items may go unnoticed at clients
unless those clients periodically poll the server.

Push-based approaches, in contrast, avoid the issues identified for client-pull,
but have the problem of deciding which data to send to clients in the absence of
specific requests. Clearlv, sending irrelevant data to clients is a waste of resources.
A more serious problem, however, is that in the absence of requests it is possible
that the servers will not deliver the specific data that are needed by clients in
a timelv fashion (if ever). Thus, the usefulness of server push is dependent on
the ability of a server to accurately predict the needs of clients. One solution to
this problem is to allow the clients to provide a profile of their interests to the
servers. Publish/subscribe protocols are one popular mechanism for providing

such profiles.

Aperiodic vs. Periodic - Both push and pull can be performed in either an
aperiodic or periodic fashion. Aperiodic delivery is event-driven - a data request
(for pull) or transmission (for push) is triggered by an event such as a user action
(for pull) or data update (for push). In contrast, periodic delivery is performed
according to some pre-arranged schedule. This schedule may be fixed, or may
be generated with some degree ofrandomness.4 An application that sends out
stock prices on a regular basis is an example of periodic push, whereas one that
sends out stock prices only when they change is an example of aperiodic push.

For the purposes of this discussion, we do not distinguish between fixed and random-
ized schedules. Such a distinction is important in certain applications. For example
algorithms for conserving energy in mobile environments proposed by Imiehnski et
al [Imie94b] depend on a strict schedule to allow mobile clients to doze during
period* when no data of interest to them will be broadcast.

38

Unicast vs. 1-to-N - The third characteristic of data delivery mechanisms we
identify is whether they are based on unicast or 1-to-N communication. With
unicast communication, data items are sent from a data source (e.g., a sin-
gle server) to one other machine, while 1-to-N communication allows multiple
machines to receive the data sent by a data source. Two types of 1-to-N data
delivery can be distinguished: multicast and broadcast. With multicast, data is
sent to a specific subset of clients. In some systems multicast is implemented by
sending a message to a router that maintains the list of recipients. The router
reroutes the message to each member of the list. Since the list of recipients is
known, it is possible to make multicast reliable; that is, network protocols can be
developed that guarantee the eventual delivery of the message to all clients that
should receive it. In contrast, broadcasting sends information over a medium on
which an unidentified and unbounded set of clients can listen. This differs from
multicast in that the clients who may receive the data are not known a priori.

The tradeoffs between these approaches depend upon the commonality of
interest of the clients. Using broadcast or multicast, scalability can be improved
by allowing multiple clients to receive data sent using a single server message.
Such benefits can be obtained, however, only if multiple clients are interested in
the same items. If not. then scalability may actually be harmed, as clients may
be continually interrupted to filter data that is not of interest to them.

2.2 Classification of Delivery Mechanisms

It is possible to classify many existing data delivery mechanisms using the char-
acteristics described above. Such a classification is shown in Figure 1. We discuss
several of the mechanisms below.

Aperiodic Pull - Traditional request/response mechanisms use aperiodic
pull over a unicast connection. If instead, a 1-to-N connection is used, then
clients can "snoop" on the requests made by other clients, and obtain data that
they haven't explicitly asked for (e.g, see [Acha97, Akso98]).

Periodic Pull - In some applications, such as remote sensing, a system may
periodically send requests to other sites to obtain status information or to detect
changed values. If the information is returned over a 1-to-N link, then as with
request/response, other clients can snoop to obtain data items as they go by.
Most existing Web or Internet-based "push" systems are actually implemented
using Periodic Pull between the client machines and the data source(s) [Fran98].

Aperiodic Push - Publish/subscribe protocols are becoming a popular
way to disseminate information in a network [Oki93, Yan95, Glan96]. In a pub-
lish/subscribe system, users provide information (sometimes in the form of a pro-
file) indicating the types of information they wish to receive. Publish/subscribe
is push-based; data flow is initiated by the data sources, and is aperiodic, as there
is no predefined schedule for sending data. Publish/subscribe protocols are in-
herently 1-to-N in nature, but due to limitations in current Internet technology,
they are often implemented using individual unicast messages to multiple clients.
Examples of such systems include Internet e-mail lists and some existing "push"
systems on the Internet. True 1-to-N delivery is possible through technologies

39

such as IP-Multicast, but such solutions are not universally available across the

Internet.
Periodic Push - Periodic push has been used for data dissemination in manj

systems. An example of Periodic Push using unicast is Internet mailing lists that
send out "digests" on a regular schedule. For example, the Majordomo system
allows a list manager to set up a schedule (e.g., weekly) for sending digests.
Such digests allow users to follow a mailing list without being continually inter-
rupted by individual messages. There have also been many systems that use Pe-
riodic Push over a broadcast or multicast link. These include TeleText [Amma85,
Wong88]. DataCycle [HermST], Broadcast Disks [Acha95a, Acha95b] and mobile

databases [Imie94b].

2.3 Network Transparency

The previous discussion has focused primarily on different modes of data delivery.
The second aspect of the DBIS framework addresses how those delivery modes
are used to facilitate the efficient transfer of data through the nodes of a DBIb
network. The DBIS framework defines three types of nodes:

1. Daia Sources, which provide the base data to be disseminated.
2 Clients which are net consumers of information.
3' Information Brokers, (or agents, mediators, etc.), which acquire information

from other sources, possibly add value to that information (e.g., some ad-
ditional computation or organizational structure), and then distribute this

information to other consumers.

Brokers are the glue that bind the DBIS together. Brokers are middlemen;
a broker acts as a client to some number of data sources, collects and possibly
repackages the data it obtains, and then functions as a data source to other
nodes of the system. By creating hierarchies of brokers, information delivery can
be tailored to the needs of many different users.

The ability of brokers to function as both clients and data sources provides the
basis for the notion of Network Transparency. Receivers of information cannot
detect the details of interconnections any further upstream than their immediate
predecessor. Because of this transparency, the data delivery mechanism used
between two or more nodes can be changed without requiring changes to the data
delivery mechanisms used for other communication in the DBIS. For example,
suppose that node B is pulling data values from node A on demand. Further
suppose that node C is listening to a periodic broadcast from node B which
includes values that B has pulled from A. Node C wül not have to change it s
data gathering strategy \i A begins to push values to B Changes in links are of
interest only to the nodes that are directly involved. Likewise uns transparency
allows the «appearance" of the data delivery at any node to differ from the way
the data is actually delivered earlier in the network. This in turn, allows the
data delivery mechanisms to be tailored for a given set of nodes. For example, a

40

broker that typically is very heavily loaded with requests could be an excellent
candidate for a push-based delivery mechanism to its clients.

Current Internet "push" technology, such as that provided by PointCast [Rama98]
provide an excellent example of network 'transparency in action. To the user sit-
ting at the screen, the system gives the impression of using aperiodic push over
a broadcast channel. Due to current limitations of the Internet, however, that
data is actually brought over to the client machine using a stream of periodic
pull requests, delivered in a unicast fashion. Thus, the data delivery between
the client and the PointCast server is actually the exact opposite of the view
that is presented to the user in all three dimensions of the hierarchy of Figure 1.
This situation is not unique to PointCast; in fact, it is true for virtually all of
the Internet-based push solutions, and stems from the fact that current IP and
HTTP protocols do not adequately support push or 1-to-N communication.

■ :tw»t

ife-JAASLfcL Tim --• TTT ifirriiinrar'-'iT^-fSTtfiT^Tf^rTP--

Fig. 2. The Map Dissemination Application

3 An Initial Prototype

As stated in the introduction, our ultimate goal is to build a toolkit of com-
ponents that can be used to create a DBIS tailored to support a particular set

41

of dissemination-based applications. In order to better understand the require-
ments and desired properties of such a toolkit, we have constructed an initial
prototype toolkit and have used it to implement a weather map dissemination

application. .
Figure 2 shows an example screen from this application. In this application

one or more "map servers" sends out updated maps of different types (i.e.,
radar, satellite image, etc.) for different regions of the United States. Clients
can subscribe to updates for specific types of maps for specific regions. They
can also pose queries to obtain the most recent versions of specific maps. The
DBIS components route such queries to the appropriate server(s). In the current
prototype, all maps are multicast to all clients - the clients perform additional
filtering to avoid displaying unrequested results to the user. In the remainder oi
this section, we briefly describe the implementation of the prototype toolkit.

3.1 Toolkit Description

Figure 3 shows an example instantiation of a DBIS using the current toolkit.
The toolkit consists of four main components. These are shown as lightly-shaded
items in the figure. The darker shaded items are software that is not part of the
DBIS toolkit, namely, the data sources and clients themselves. The components
of the current prototype are:

1. Data Source (DS) Library - a wrapper for data sources that encapsulates
network communication and provides conversion functions for data.

2 Client Library - a wrapper for client programs that encapsulates network
communication and provides conversion functions for queries and user pro-
files The client library is also responsible for monitoring broadcast and mul-
ticast channels and filtering out the data items of local interest that appear

on those channels. . ,
3 Information Broker (IB) - the main component of the DBIS toolkit. Ihe

IB contains communication, buffering, scheduling, and catalog management
components and is described in more detail below.

4 Information Broker Master - The IB Master is responsible for managing
global catalog information about data and about the topology of the DBIS.
Ail IBs must register with the IB Master and all catalog updates must be
sent to the IB Master. The presence of the IB Master is one of the major
limitations of this initial prototype, as it is obviously a potential scalability
bottleneck for the system. A large part of the design effort for the next
version of the prototype is aimed at distributing the functions of the IB

Master.

3.2 Data Modeling Considerations

The DBIS prototype currently uses a simple data model: the catalog consists
of a set of category definitions. Categories are application-specific, that is, each

42

Data Source

Information
Broker

Client

1 US Code

DS Library

II
IB

Executable

JS
Client
library

•Cieid
Code

• 1 Other IB
| Executable

Data

fCtteloglnfo

/

Ctteloglnfo

Toolkit

Application Developer
Implementation

Fig. 3. An Instantiation of a DBIS

application provides its own set of category definitions. Each data item is asso-
ciated with a single category. In addition, a set of keywords can be associated
with each data item. Categories and keywords are used in the specification of
queries and profiles. Queries are pull requests that are transmitted from a client
to a data source. Queries consist of a category and optional keywords. Queries
are processed at a data source (or an IB); all data items that match the cate-
gory (and at least one of the keywords if specified) are sent to the client from
which the query originated. In contrast, profiles are used to support pusA-based
delivery. When a new data item arrives at an IB, its category and keywords are
compared with the user profiles registered at that IB and the item is sent to
any clients whose profile indicates an interest in the item. Thus, profiles can be
viewed as a form of continually executing query.

Clearly, this simple approach to data modeling must be extended to sup-
port more sophisticated applications. We are currently exploring database and
WWW-based (e.g., XML) approaches for semi-structured data modeling for use
in subsequent versions of the toolkit.

3.3 Information Broker Architecture

As stated above, the Information Broker module contains most of the function-
ality of the DBIS toolkit. The architecture of an IB is illustrated in Figure 4.
Basic components of the IB are the following:

43

Fig. 4. Information Broker (IB) Architecture

Catalog Manager - This component manages local copies of catalog in-
formation for use by the processes running at the broker. Recall that the
primary copy of the catalog is managed by the IB Master. All requested
changes to the catalog information are sent to the IB Master, which then
propagates them to the catalog managers of all other IBs.

Data Source Manager - This component is in charge of receiving and
filtering data items obtained from the data sources. It manages a separate
listener thread for each data source directly connected to the IB.

Broker Agent - This component is responsible for IB-to-IB interaction,
that is, when an IB receives data from another IB rather than directly from
a data source.

44

Broadcast Manager - Once data has been filtered through the data source
manager or the broker agent, it is passed to the Broadcast Manager, which
has two main components. The Mapper assigns the data item to one or more
physical communication channels. The Scheduler makes decisions about the
order in which data items should be placed on those channels.
Network Manager - This is the lowest level of the communication com-
ponent of the IB. It sends data packets to the network according to the
information provided by the broadcast manager.
Client Manager - This module handles all requests that arrive from the
clients of the IB. It forwards these requests to the proper modules within
the IB and maintains communication sessions with the clients.

4 Example Research Topics

Having described our general approach to building Dissemination-Based Infor-
mation Systems, we now focus on two examples of the many research issues that
arise in the development of such systems.

Satellite

Fig. 5. Example Data Broadcasting Scenario

4.1 Topic 1: On Demand Broadcast Scheduling

As described in Section 2.1, one of the many possible mechanisms for data dis-
semination uses on-demand (i.e., aperiodic pull) broadcast of data. An example
scenario using such data delivery is shown in Figure 5. In this scenario, two inde-
pendent networks are used: a terrestrial network for sending pull requests to the
server, and a "listen only" satellite downlink over which the server broadcasts

45

data to all of the clients. When a client needs a data item (e.g., a web page or
database object) that it cannot find locally, it sends a request for the Hem to the
server. Client requests are queued up (if necessary) at the server upon arrival.
The server repeatedly chooses an item from among these requests, broadcasts
it over the satellite link, and removes the associated request(s) from the queue.
Clients monitor the broadcast and receive the item(s) that they require^

In a large-scale implementation of such a system, an important consideration
is the scheduling algorithm that the server uses to choose which request to ser-
vice from its queue of waiting requests. We have developed a novel on-demand
broadcast scheduling algorithm, called RxW [Akso98], which is a practical, low-
overhead and scalable approach that provides excellent performance across a

range of scenarios.
The intuition behind the RxW scheduling algorithm is to provide a balanced

performance for hot (popular) and cold (not so popular) pages- This intuition is
based on our observations of previously proposed algorithms. We have observed
that two low overhead algorithms, Most Requests First (MRF) and First Come
First Served (FCFS) [Dvke86, Wong88], have poor average case performance
because thev favor the broadcasting of hot or cold pages respectively. A third
algorithm. Longest Wait First (LWF) [Dyke86, Wong88] was shown to provide
fairer treatment of hot and cold pages, and therefore, good average case perfor-
mance. LWF. however, suffers from high overhead, making it impractical for a

large svstem. , ,
Based on these observations, we set out to combine the two low-overhead

approaches (MRF and FCFS) in a way that would balance their strengths and
weaknesses. The RxW algorithm schedules the page with the maximal fix»
value where R is the number of outstanding requests for that page and W is the
amount time that the oldest of those requests has been waiting for the page.
Thus RxW schedules a page either because has many outstanding requests or
because there is at least one request that has waited for a long time.

The algorithm works by maintaining two sorted lists (one ordered by R values
and the other ordered by W values) threaded through the service queue, which
has a single entry for any requested page of the database. Maintaining these
sorted lists is fairly inexpensive since they only need to be updated when a
new request arrives at the server5. These two sorted lists are used by a pruning
technique in order to avoid an exhaustive search of the service queue to find the
mavima! RxW value. This technique is depicted in Figure 6

The search starts with the pages at the top of the R list. The corresponding
W value for that page is then used to compute a limit for possible W values.
That is, after reading the top page in the R list, it is known that the maximum
ÄxW-valued page cannot have a W value below this limit. Next, the entry for
the page at the top of the W list is accessed and used to place a limit on the
R value The algorithm alternates between the two queues and stops when the
limit is reached on one of them. This technique prunes the search space while

* In contrast, for LWF the ordering can change over time, even in the absence of new

requests.

46

limit (KEQcnt) _

\

3
TOP(Waii)

AVjr/ (Wait)

limit OMARV)

Fig. 6. Pruning the Search Space

still guaranteeing that the search will return the page with the maximum RxW
value.

In our experiments [Akso98], the pruning technique was shown to indeed
be effective - reducing the number of entries searched by 72%. While such a
substantial savings is helpful, it is probably not sufficient to keep the scheduling
overhead from ultimately becoming a limiting factor as the system is scaled to the
huge applications that will be enabled by the national and global broadcasting
systems currently being deployed.

In order to achieve even greater reductions in the search space we developed
an approximation-based version of the algorithm. By varying a single parameter
Q. this algorithm can be tuned from having the same behavior as the RxW
algorithm described so far, to being a constant time approach. The approximate
algorithm selects the first page it encounters whose RxW value is greater than
or equal to a x threshold, where threshold is the running average of the RxW
value of the last page that was broadcast and the threshold at that time.

The setting of a determines the performance tradeoffs between average wait-
ing time, worst case waiting time, and scheduling overhead. The smaller the
value of the parameter, the fewer entries are likely to be scanned. At an extreme
value of 0, the algorithm simply compares the top entry from both the R list
and the W list and chooses the one with the highest RxW value. In this case,
the complexity of making a scheduling decision is reduced to 0(1), ensuring that
broadcast scheduling will not become a bottleneck regardless of the broadcast
bandwidth, database size, or workload intensity. We demonstrated the perfor-
mance, scalability, and robustness of the different RxW variants through an
extensive set of performance experiments described in [Akso98].

4.2 Topic 2: Learning User Profiles

User profiles, which encode the data needs and interests of users, are key com-
ponents of push-based systems. From the user's viewpoint, a profile provides
a means of passively retrieving relevant information. A user can submit a pro-
file to a push-based system once, and then continuously receive data that are
(supposedly) relevant to him or her in a timely fashion without the need for

47

submitting the same query over and over again. This automat, flo»f ^^t
information helps the user keep pace with the ever-increasing rate of ^formation
generaUon. From the system point of view, profiles fulfill a role similar to that of
fue es in database or information retrieval systems. In fact, profiles are a form

Continuously executing query. In a large publish »™*«?^£%
and access of user profiles can be be resource-intensive. Additionally given the
fact that user interests are changing over time, the profiles must be updated
arcordinelv to reflect up to date information needs.

We ha .developed an algorithm called Multi-Modal (MM), for^cremen-
tallv constructing and maintaining user profiles for filtering text-based dat
terns [Ceti98l MM can be tuned to tradeoff effectiveness (>.e accuracy of the

filtere dU lems), and efficiency of profile management. The algorithm recedes
relevance feedback information from the users about the documents that they
have seen (i.e., a binary indication of whether or not the document was con-
sidered useful and uses this information to improve ^-tpro^
important aspect of MM is that it represents a user profile as multiple U}^word
vectors whose size and elements change dynamically based on »ff^J^-

In fact, it is this multi-modal representation of profiles which allows MM
to tradeoff effectiveness and efficiency. More specifically, the algorithm can b
tuned using a threshold parameter to produce profile, with *^* j^
consider the two boundary values of this threshold parameter to illustrate ths
rad off When the threshold is set to 0, a user profile is represented by a singk

levword vector, achieving an extremely low overhead for profile management,
but seiouslv limiting the effectiveness of the profile. At the other extreme if
the th -hold is set to 1, we achieve an extremely fine granularity user model
how ver the profile size equals the number of relevant docu-ents observed by
the user making it impractical to store and maintain profiles^ Therefore it is
more desirable to consider intermediate threshold values which will provide an
optimal effectiveness/efficiency tradeoff for a given application.

We evaluated the utility of MM by experimentally investigating is ability to
categorize pages from the World Wide Web. We used non-interpolated average
P: cfsion as our primary effectiveness metric and focused§ onhe pro file size
for quantifying the efficiency of our approach. We demonstrated ^at we can
achieve significantly higher precision values with modest mcrease.n pwfik ««».
Additionally, we were able to achieve precision values with small profiles that
were ompa able to, or in some cases even better than those obtained with
maximum sized profiles. The details of the algorithm, experimental setting, and

the results are discussed in [Ceti98].

5 Summary

The increasing ability to interconnect computers through mternetworking mo-
Se and wt eL networks, and high-bandwidth content de hvery to the home^
has Suited in a proliferation of dissemination-oriented apphcatxons. These ap-
%a?on PrSentPnew challenges for data management throughout all compo-

48

nents of a distributed information system. We have proposed the notion of a
Dissemination-Based Information System (DBIS) that integrates many different
data delivery mechanisms and described some of the unique aspects of such sys-
tems. We described our initial prototype of a DBIS Toolkit, which provides a
platform for experimenting with different implementations of the DBIS Compo-
nents. Finally we described our work on two of the many research issues that
arise in the design of DBIS architectures.

Data Dissemination and data broadcasting are very fertile and important
areas for continued research and development. In fact, we see a migration of
data management concerns from the traditional disk-oriented architectures of
existing database systems, to the more general notion of Network Data Manage-
ment, in which the movement of data throughout a complex and heterogeneous
distributed environment is of paramount concern. Our ongoing research efforts
are aimed at better understanding the challenges and tradeoffs that arise in the
development of such systems.

References

[Acha95a] S. Acharya. R. Alonso, M. Franklin, S. Zdonik, "Broadcast Disks: Data
Management for Asymmetric Communication Environments", Proc. ACM
S1GMOD Con}., San Jose, CA, May, 1995.

[Acha95b] S. Acharya, M. Franklin, S. Zdonik, "Dissemination-based Data Delivery
Using Broadcast Disks'', IEEE Personal Commvnications, 2(6), December,
1995.

[Acha97] S. Acharya, M. Franklin. S. Zdonik. "Balancing Push and Pull for Broadcast
Data". Proc. ACM SIGMOD Con}., Tucson, AZ, May, 1997.

[Akso98] D. Aksoy, M. Franklin "Scheduling for Large-Scale On-Demand Data Broad-
casting" IEEE INFOCOM '98, San Francisco, March, 1998.

[Amma85] M. Ammar, J. Wong, "The Design of Teletext Broadcast Cycles", Per}.
Evaluation, 5 (1985).

[Ceti98] U. Cetintemel, M. Franklin, and C. Giles, "Constructing User Web Access
Profiles Incrementally: A Multi-Modal Approach", In Preparation, October,
1998.

[Dyke86] H.D. Dykeman, M. Ammar, J.W. Wong, "Scheduling Algorithms for Video-
tex Systems Under Broadcast Delivery", IEEE International Conference on
Communications, Toronto, Canada, 1986.

[Fran97] M. Franklin, S. Zdonik, "A Framework for Scalable Dissemination-Based
Systems", Proc. ACM OOPSLA Conference, Atlanta, October, 1997.

[Fran98] M. Franklin, S. Zdonik. "Data in Your Face: Push Technology in Perspec-
tive", Proc. ACM SIGMOD Int'l Con}, on Management o}Data (SIGMOD
98), Seattle, WA, June, 1998, pp 516-519.

[GirT90] D. Gifford, "Polychannel Systems for Mass Digital Communication",
CACM, 33(2), February, 1990.

[Glan96] D. Glance, "Multicast Support for Data Dissemination in OrbixTalk", IEEE
Data Engineering Bulletin, 19(3), September, 1996.

[Herm87] G. Herman, G. Gopal, K. Lee, A. Weinrib, "The Datacyde Architecture for
Very High Throughput Database Systems", Proc. ACM SIGMOD Con}.,
San Francisco, CA, May, 1987.

49

[Inlie94b] T. hnidindd. S. Viswanathan. B. Badrinath "Energy Effiden« Indexing on
Air" Proc. ACM S1GMOD Con/., Minneapolis, MN. May, 1994.

[0*93] B! Oki. M. Pfluegl, A. Siege,, D. Skeen, "The Informator,> Bus - An A -
chitecture for Extensible Distributed Systems", Proc. Uth SOSP, Asnvüle,

NC, December, 1993. A rat Sid
[Rama98] S. Ramakrishnan, V. Dayal, "The ^^^ ^Seiul WA,

MOD 7n<7 Con}, on Management of Data (SIGMOD 98), beattie, V>A,

[WoBg88]]UWong99"BroaLt Delivery", Proceed^ of the IEEE, 76(12), December,

fVMMl S9Viswana,han. "Publishing in Wireless and Wireline Environments", Ph.D

Thesis, Rutgers Univ. Tech. Report, November, 1994.
[Yan95] T Yan H. Garcia-Molina, "SIFT - A Tool for Wide-area Informal Dt,
1 semination", Proc. 1995 USENJX Technical Conference, 1995.

Thir article was processed using the WEX macro package with LLNCS style

50

Appendix D

DBIS-Toolkit: Adaptive Middleware for Large Scale Data Delivery

51

Demo description for the ACM SIGMOD Conference, Philadelphia, PA, 1999

DBIS-Toolkit: Adaptable Middleware
For Large Scale Data Delivery

Mehmet Altinel, Demet Aksoy, Thomas Baby, Michael Franklin,
William Shapiro and Stan Zdonik

Department of Computer Science
University of Maryland

College Park, MD 20742
I altinel demet, tliomas, franklin,

billshapj@cs.itmd.edu

'Department of Computer Science
Brown University

Providence, RI02912
sbz@cs.brown.edu

Introduction
The proliferation of the Internet and intranets, advances in wireless and satellite networks, and the
Ivailabil v of asymmetnc, high-bandwidth links to the home, have fueled the development of a wide
rASnainWd" applications. These applications.involvejfte,^*£^°» °f

data to a laree set of consumers, and include stock and sports tickers, traffic inform« on systems
elect onic personalized newspapers, and entertainment delivery. D.ssemmation-onented applications
navS thVrender traditional client-server data management approach*; ineffective.
These delude: tremendous scale, significant overlap in user data needs, and asymmetnc data flow from

sources to consumers.

The mismatch between the data access characteristics of these applications and the technology'used to
imminent them on the WWW results in scalability problems [Fran98]. For example, WWW based

pptSfe«
of data delivery Using request-response, each user sends requests for data to the server. The large
audience for popular event can generate huge spikes in the load at servers, resulting in long delays and
ove "aded serverVcompöundinJ the situation is that users must continually poll the server to obtain
Z^cSSiSting in multiple requests for the same data items from each user. In an
appSonTuch as an electionresult server, where the interests of a large part of the population are
known a priori, most of these requests are unnecessary.

In order to address the needs of this new class of applications, we are developing a ««^«ion-Based
, J \ % ,ctomc mm^ toolkit The toolkit serves as an adaptable middleware layer that

E^^Snment. The toolkit also includes facilities for performance ^omtonng whic^can
aHow System developer to examine the impact of using different data delivery mechanisms^ We tave
!^™X iidtial^«!» of this toolkit and have used it to develop a weather map dissemination

application.

DBIS-Toolkit Overview
52

The DBIS Framework
The basic concepts of the DBIS framework were presented at the OOPSLA 97 conference [Fran97]. A
more recent description appears in [Akso98b]. The two major features of the framework are: First, it
incorporates a number of different options for data delivery, including traditional request-response,
publish/subscribe, Broadcast Disks [Acha95, Acha97] and on-demand broadcast [Akso98a]. Second, it
is based on the notion of network transparency, which allows different data delivery mechanisms to be
mixed-and-matched within a single application. Network transparency is provided through the use of
Information Brokers, which acquire information and distribute it to other consumers. Brokers are
middlemen; a broker acts as a client to some number of data sources, collects and possibly repackages
the data it obtains, and then functions as a data source to other nodes of the system. Along the way,
brokers may add value to the information, such as integrating it with data from other sources or
enhancing its organizational structure. By creating hierarchies of brokers, information delivery can be
tailored to the needs of many different users.

Data Source

Ctuloj Wb.

Information
Broker

Client
Toofci

Applicsion Dwtloper

Figure 1: An Instantiation of a DBIS

Toolkit Description
The toolkit provides a set of application programming interfaces (APIs) and libraries that allow a
developer to construct and experiment with a DBIS application. Figure 1 shows an example instantiation
of a DBIS using the current toolkit. The DBIS-Toolkit consists of four main components (shown as
lightly-shaded items in the figure):

Data Source (DS) Library - a data source wrapper that encapsulates network communication and
provides conversion functions for data.

Client Library - a client program wrapper that encapsulates network communication and provides
conversion functions for queries and user profiles. It also provides monitoring and filtering of broadcast
or multicast channels.

Information Broker (IB) - the main component of the DBIS-Toolkit. The IB contains communication,

53

buffering, scheduling, and catalog management components and is described in more detail below.

Information Broker Master - The IB Master is responsible for managing global catalog information
about data and the topology of the DBIS. All IBs must register with the IB Master and all catalog
updates must be sent to the IB Master.

In addition to these four components, the toolkit contains a flexible performance monitonng capability
that can be used to graphically display real-time performance metrics such as bandwidth and CPU
utilization, response times, etc. on a per-IB basis.

Data Modeling
As the focus of this project to date has been on the "plumbing" required to integrate multiple forms of
data delivery at the application level, the current prototype uses a very simple data model consisting of
categories and keywords within those categories. Categories and keywords are used in the specification
Tonnes and profiles. Queries are pull requests that are transmitted from a client to a data source (via
one or more IBs). Queries consist of a category and optional keywords. Quenes are ultimately processed
at a data source -- all data items that match the category and at least one keyword (if specified) are sent
to the client from which the query originated. In contrast, profiles are used to support P^^d
delivery When a new data item arrives at an IB, its category and keywords are compared with the user
profiles registered at that IB and the item is sent to any clients whose profile indicates an interest m the
Tm Thus! profiles can be viewed as a form of continually executing quenes. The integrano of more

sophisticated data models such as (XML-based) semi structured models, and more flexible IR-style
models is one aspect of our on-going development for the toolkit.

54

Figure 2: Information Broker (IB) Architecture

Information Broker Architecture
As stated above, the IB contains much of the functionality of the DBIS-Toolkit. The IB module (shown
in Figure 2) consists of the following components:

Data Source Manager (DSM) - This component obtains (via push or pull) data items from the data
sources and matches them v/ith client pull requests or profiles.

Broker Agent (BA) - This component performs similar functions as the DSM but for sources that are
actually other IBs (rather than data sources). In addition, the BA handles other IB-to-IB functions such
as profile and request forwarding.

Catalog Manager - This component manages local copies of catalog information for use by the
processes running at the broker. All catalog changes are sent to the IB Master, which propagates them to
the catalog managers of all other IBs.

Broadcast Manager - Once data have been filtered through the DSM or B A, they are passed to the
Broadcast Manager, which has two main components. The Mapper assigns data items to one or more
physical communication channels. The Scheduler makes decisions about the order in which data items
sho'iid be placed on those channels.

55

Network Manager - This is the lowest level of the communication component of the IB. It sends data_
packets to the network according to the information provided by the broadcast manager.

Client Manager - This module handles requests that arrive from the IB's clients. It forwards them to the
proper modules within the IB and maintains communication sessions with the clients.

A DBIS Application
An initial version of the DBIS-Toolkit has been built using Windows NT and its IP Multicast support.
The toolkit has been used to create a weather map dissemination application (see Figure 3). In this
application "map servers" send out updated maps of different types (i.e., radar, satellite image, etc.) for
different regions of the United States. Clients can subscribe to receive updates for specific types of maps
for specific regions. Users can also pose queries to obtain the most recent versions of specific maps or to
zoom in on specific regions of the maps. Maps are delivered over unicast or multicast links. The
application serves as a demonstration vehicle emphasizing the following unique aspects of the
DBIS-Toolkit:

• The incorporation of multiple delivery mechanisms and the ways in which they are supported by
the various components of the toolkit.

• The ability to make efficient use of available resources by choosing appropnate delivery
mechanisms.

• The exploitation of Network Transparency through the use of multiple levels of Information
T3*-rvl/af,p

• The ability to monitor the system dynamically using the graphical performance monitor.

56

■»aiw«; nii-».wP''i'««-'l'"*»''i
£k £* jjfc. HO W«J«»<<CT

Ä

pr^-?v:^^«.^*-^5c3iiyig^ggm:7iaME
E» [» V— S~

Information Broker
P fw.5«« #
P PulOau S

P»*r,tuu •
P Ului 9

.»fcpj —

fecamd 1

«■ nro rwj y^ j sig> [-CUT»»*» - -CJMSUU
Pull««]

5wv« | fr* |

i .J| uhu

UrfTiTö' fa» Jitäs Ifc-pnö MK|<<«0

ais..i| SaB3t) gwstort c.|gwti««g ||au**w-w.... a««'""'»-»-l>"^'Ste>"l<gw',*fc»i I

Figure 3: Example DBIS Application

'.jl&iflBe *«*"

Acknowledgments
The authors would like to thank Rahul Bose, Jane Wang and Rick Rhodes for their contributions to the
DBIS prototype design and implementation. This research has been partially supported by Rome Labs
agreement number F30602-97-2-0241 under DARPA order number F078, by the NSF under grant
IRI-9501353, and by Intel, Microsoft, NEC, and Draper Laboratories.

References

Acha95
S Acharya, R. Alonso, M. Franklin, S. Zdonik, "Broadcast Disks: Data Management for
Asymmetric Communication Environments", Proc. ACM SIGMOD Conf., San Jose, CA, May,
1995.

Acha97
S. Acharya, M. Franklin, S. Zdonik, "Balancing Push and Pull for Broadcast Data", Proc. ACM
SIGMOD Conf., Tucson, AZ, May, 1997.

Akso98a
57

D. Aksoy, M. Franklin "Scheduling for Large-Scale On-Demand Data Broadcasting" IEEE
INFOCOM '98, San Francisco, March, 1998.

AkS°DbAksoy M Altinel, R. Bose, U. Cetintemel, M. Franklin, J. Wang, S. Zdonik,"Research in Data
Broadcast'and Dissemination", Proc. 1st Infl Conf. on Advanced Multimedia Content Processing,
Osaka University, Osaka, Japan, November, 1998.

ra" M. Franklin, S. Zdonik, "A Framework for Scalable Dissemination-Based Systems", Proc. ACM
OOPSLA Conference, Atlanta, October, 1997.

ran M. Franklin, S. Zdonik. "Data in Your Face: Push Technology in Perspective", Proc. ACM
S1GMOD Conf., Seattle, WA, June, 1998.

58

Appendix E

A Framework for Scalable Dissemination-Based Systems

59

A Framework for Scalable Dissemination-Based Systems*

Michael Franklin
University of Maryland

frankliiräcs. umd.edu

Stanley Zdonik
Brown University

sbz@cs.brown.edu

Abstract

The dramatic improvements in global interConnectivity due

to intranets, extranet?, and the Internet has led to an explo-

sion in the number and variety of new data-intensive applica-

tions. Along with the proliferation of these new applications

have come increased problems of scale. This is demonstrated

by frequent delays and service disruptions when accessing

networked data sources. Recently, push-based techniques

have been proposed a.s a solution to scalability problems for

distributed applications. This paper argues that push in-

deed has its place, but that it is just one aspect of a much

larger design space for distributed information systems. We

propose the notion of a Dissemination-Based Information

System (DB1S) which integrates a variety of data delivery

mechanisms and information broker hierarchies. We discuss

the properties of such systems and provide some insight into

the architectural imperatives that wül influence their design.

The DB1S framework can serve as the basis for development

of a toolkit for constructing distributed information systems

that better match the technology they employ to the char-

acteristics of the applications they are intended to support.

1 Introduction

1.1 The World-Wide Wait

The scenario is all too familiar — a major event, such as

a national election, is underway and the latest, up-to-the

minute results are being posted on the Web. You want to

monitor the results for the important national races and

for the races in your state, so you fire up your trusty web

'This work has been partially »upported by the NSF under grant
IRI-9501353, by Rome Labs Agreement Number F30602-97-2-0241
under ARPA order number F078, by an IBM Cooperative Gradu-
al» Fellowship, and by research funding and equipment from Intel
Corporation.

browser, point it at the election result web site and wait,

and wait, and wait.... What's the problem? It could be

any number of technical glitches: a congested network, an

overloaded server, or even a crashed server. In a larger sense,

however, the problem is one of scalability; the system cannot

keep up with the heavy load caused by the (transient) surge

in activity that occurs in such situations.

We argue that such scalability problems are the result

of a mismatch between the data access characteristics of the

application and the technology (in this case, HTTP) used to

implement the application. An election result server, such

as that of the preceding scenario, is an example of a data

dtssemination-oriented application. Data dissemination in-

volves the delivery of data from one or more sources to a

large set of consumers. Many dissemination-oriented ap-

plications have data access characteristics that differ sig-

nificantly from the traditional notion of client-server appli-

cations as embodied in navigational web browsing technol-

ogy. For example, the election result server has the follow-

ing characteristics: 1) There is a huge population of users

(potentially many millions) who want to access the data; 2)

There is a tremendous degree of overlap among the interests

of the user population; 3) Users who are Mowing the event

closely are interested only in new data and changes to the

existing data; and, 4) The amount of data that must be sent

to most users is fairly small. When looking at these char-

acteristics, it becomes clear that the request-response (i.e.,

RPC), unicast (i.e., point-to-point) method of data delivery

used by HTTP is the wrong approach for this application.

Using request-response, each user sends requests for data

to the server. The large audience for a popular event can

generate huge spikes in the load at servers, resulting in long

delays and server crashes. Compounding the situation is

60

thai users must continually poll the server to obtain the most

current data, resulting in multiple requests for the same data

items from each user. In this example application, where the

desires of a large part of the population are known a priori,

most of these requests are unnecessary.

The use of unicast data delivery likewise causes problems

in the opposite direction (from servers to clients). With uni-

cast the server is required to respond individually to each

request, often transmitting identical data. For an applica-

tion with many users, the costs of this repetition in terms

of network bandwidth and server cycles can be devastating.

1.2 Is "Push" the Answer?

The above scenario is well-known to web users and, not sur-

prisingly, an increasing number of products are being intro-

duced to address it. A number of these products have re-

ceived tremendous media attention lately because they are

based on a technology called data Push. Using data push,

the transmission of data to users is initiated without requir-

ing the users to explicitly request it. Examples of systems

that employ some form of push technology include Point-

cast, Marimba. BackWeb, and AirMedia. Push has also

been added to recent versions of the major Web browsers,

and the battle for data push standards is well underway.

Systems that are truly implemented with data push can

indeed solve some of the scalability problems attributed above

to request-response. Since users do not have to poll servers

for new and updated data, the number of client requests that

must be handled by a server can be reduced dramatically.

Simply changing from a client "Pull" model to a push model,

however, does not solve all the problems for an application

such as the election result server. In particular, performing

push to millions of clients using a unicast communication

protocol does little to address network bandwidth problems

and still requires the server to perform substantial work for

each client it is serving. Compounding the confusion is the

fact that many systems that provide a "push" interface to

users are actually implemented using a programmed polling

mechanism. These systems simply save the user from hav-

ing to click, but do nothing to solve the scalability problems

caused by the request-response approach.

The election result server is an example of just one type

of dissemination-oriented application. Other examples in-

clude news and entertainment delivery, software distribu-

tion, traffic information systems, and navigational web brows-

ing. These applications differ widely in the characteris-

tics of the data involved (e.g.. size, consistency constraints,

etc.). access patterns, and communication channel proper-

ties (e.g., symmetric vs. asymmetric, continuously or inter-

mittently connected, etc.). No one data delivery mechanism

can provide adequate support for the wide variety of such

applications.

To address this need, we are developing a general frame-

work for describing and ultimately constructing Dissemination-

Based Information Systems (DBIS). In this framework, push

vs. pull is a choice along just one of several dimensions of

the design space for data delivery mechanisms. In this pa-

per, we outline a number of data delivery mechanisms and

investigate the tradeoffs among them. The goal is to de-

velop a flexible architecture that is capable of supporting

a wide range of applications across many varied environ-

ments, such as mobile networks, satellite-based systems, and

wide-area networks. By combining the various data deliv-

ery techniques in a way that matches the characteristics of

the application and achieves the most efficient use of the

available server and communication resources, the scalabil-

ity and performance of dissemination-oriented applications

can be greatly enhanced.

1.3 Overview of the Approach

We view an integrated DBIS as a distributed system in

which the links between the computing elements vary in

character: from standard pull-based unicast connections to

periodic push over a broadcast channel. A key point is that

the character of a link should be of concern only to the nodes

on either end. For example, the fact that an information

provider receives its data from a broadcast link as opposed

to a request-response protocol should make no difference to

clients of that provider.

In our approach, we distinguish between three types of

nodes: (1) data sources provide the base data for the ap-

plication; (2) clients consume this information; and (3) t'n-

Jormation brokers add value to information and redistribute

it. By creating hierarchies of these nodes connected by var-

ious data delivery mechanisms, the information flow can be

tailored to the needs of many different applications.

We aim to provide a toolkit of architectural components

that can be used to construct a DBIS. A builder of an in-

61

formation resource would make use of these components to

construct the interfaces to their service. Example compo-

nents include a broadcast generator, a set of dissemina-

tion services, a client cache manager, a client prefetcher.

a backchannel monitor, etc.

In the remainder of the paper we outline our current

ideas on the development of such a toolkit. Section 2 de-

scribes several options for data delivery mechanisms (i.e.,

the "links") and discussesthe tradeoffs among them. Sec-

tion 3 addresses the various types of nodes in a DBIS. Sec-

tion 4 uses the DBIS model to describe several existing

dissemination-oriented systems. Section 5 outlines issues in

the development of a DBIS toolkit. Section 6 lists related

work. Finally. Section 7 presents our conclusions.

2 Options for Data Delivery

As stated in the Introduction, a key aspect of the DBIS

framework is that it supports a wide variety of links for data

delivery between sources and clients. Support for different

styles of data delivery allows a DBIS to be optimized for

various server, client, network, data, and application prop-

erties.

2.1 Three Characteristics

We identify three main characteristics that can be used to

compare data delivery mechanisms: (1) push vs. pull; (2)

periodic vs. aperiodic; and (3) unicast vs. 1-to-N. Figure 1

shows these characteristics and how several common mech-

anisms relate to them.

2.1.1 Client Pull vs. Server Push

The first distinction we make among data delivery styles is

that of "push vs. pull". Current database servers and object

repositories manage data for clients that explicitly request

data when they require it. When a request is received at

a server, the server locates the information of interest and

returns it to the client. This request-response style of opera-

tion is pull-based— the transfer of information from servers

to clients is initiated by a dient pull. In contrast, push-based

data delivery involves sending information to a client popu-

lation in advance of any specific request. With push-based

delivery, the server initiates the transfer.

2.1.2 Aperiodic vs. Periodic

Both push and pull can be performed in either an aperi-

odic or periodic fashion. Aperiodic delivery is erent-driven

— a data request (for pull) or transmission (for push) is

triggered by an event such as a user action (for pull) or

data update (for push). In contrast, periodic delivery is

performed according to some pre-arranged schedule. This

schedule may be fixed, or may be generated with some de-

gree of randomness.1 An application that sends out stock

prices on a regular basis is an example of periodic push,

whereas one that sends out stock prices only when they

change is an example of aperiodic push.

2.1.3 Unicast vs. 1-to-N

The third characteristic of data delivery mechanisms we

identify is whether they are based on unicast or 1-to-N com-

munication. With unicast communication, data items are

sent from a data source (e.g., a single server) to one other

machine, while 1-to-N communication allows multiple ma-

chines to receive the data sent by a data source. Two types

of 1-to-N data delivery can be distinguished: multicast and

broadcast. With multicast, data is sent to a specific sub-

set of clients. In some systems multicast is implemented by-

sending a message to a router that maintains the list of re-

cipients. The router reroutes the message to each member

of the list. Since the list of recipients is known, it is pos-

sible to make multicast reliable; that is, network protocols

can be developed that guarantee the eventual delivery of

the message to all clients that should receive it. In contrast,

broadcasting sends information over a medium on which an

unidentified and unbounded set of clients can listen. This

differs from multicast in that the clients who may receive

the data are not known a priori.

2.2 Classification of Delivery Mechanisms

It is possible to classify some existing data delivery mech-

anisms using the characteristics described above. Such a

classification is shown in Figure 1. We discuss several of the

leaves in this diagram below.

1 For the purposes of thi» discussion, we do not distinguish between
fixed and randomized schedules. Such a. distinction is important in
certain applications. For example, algorithms for conserving energy
in mobile environments proposed by Imielinski et al. [Imie94b] depend
on a strict schedule to allow mobile clients to "doze" during penods
when no data of interest to them will be broadcast.

62

Pull Push

Aperiodic

Unicast 1-to-N

Periodic

Unicast 1-to-N

Aperiodic

Unicast 1-to-N

Periodic

Unicast 1-to-N

request/
response

request/
response
w/snooping

polling polling
w/snooping

triggers publish/
subscribe

reminders broadcast
disks

Figure 1: Data Delivery Options

Request/Response - Traditional request/response mech-

anisms use aperiodic pull over a unicast connection. If in-

stead, a 1-to-N connection is used, then clients can "snoop"

on the requests made by other clients, and obtain data that

they haven't explicitly asked for.

Polling - In some applications, such as remote sensing,

a system may periodically send requests to other sites to ob-

tain status information or to detect changed values. If the

information is returned over a 1-to-N link, then as with re-

quest/response, other clients can snoop to obtain data items

as they go by.

Publish/Subscribe - Publish/subscribe protocols are

becoming a popular way to disseminate information in a

network [Oki93. Yan95. GlanOG]. Publish/subscribe is push-

based: data flow is initiated by the data sources, and is ape-

riodic, as there is no predefined schedule for sending data.

Such protocols are typically performed in a 1-to-N fashion,

but a similar protocol can be used over a unicast channel,

as is done for triggers in active database systems.

Broadcast Disks - Periodic push has been used for data

dissemination in many systems such as TeleText [Amma85,

WongSS], DataCycle [Henn87, Bowe92], Broadcast Disks

[Acha95a, Acha95b] and mobile databases [lmie94a]. Clients

needing access to a data item that is pushed periodically can

wait until the item appears. As with aperiodic push, peri-

odic push can also be used with both unicast and 1-to-N

channels, but we believe that 1-to-N is likely to be much

more prevalent.

2.3 Some Example Tradeoffs

As can be seen from the preceding discussion, the design

space for data delivery mechanisms is quite large. Choos-

ing the proper mechanism (or combination of them) to use

for a given link requires an understanding of the tradeoffs

among them. In a recent paper, we studied one such set

of tradeoffs; namely, those between broadcasting data using

periodic push (Broadcast Disks) and aperiodic pull (request-

response with snooping) [Acha97]. Here, we briefly discuss

some observations from that study.

The tradeoffs between push and pull in general revolve

around the costs of initiating the transfer of data. A pull-

based approach requires the use of a backchannel for each

request. Furthermore, as described in the Introduction, the

server must be interrupted continuously to deal with such

requests and has limited flexibility in scheduling the order of

data delivery. Also, the information that clients can obtain

from a server is limited to that which the clients know to

ask for. Thus, new data items or updates to existing data

items may go unnoticed at clients unless they periodically

poll the server.

Push-based approaches, in contrast, avoid the issues iden-

tified for client-pull, but have the problem of deciding which

data to send to clients in the absence of specific requests.

Clearly, sending irrelevant data to clients is a waste of re-

sources. A more serious problem, however, is that in the

absence of requests it is possible that the servers will not

deliver the specific data needed by clients in a timely fashion

(if ever). Thus, the usefulness of server push is dependent

on the ability of a server to accurately predict the needs of

clients. One solution to this problem is to allow the clients

to provide a profile of their interests to the servers. As men-

tioned above, Publish/subscribe protocols are one popular

mechanism for providing such profiles.

In [Acha97] we studied a hybrid push/pull broadcast sys-

tem. In this system, a broadcast server is responsible for

allocating a fixed broadcast bandwidth between data items

(pages) that are broadcast according to a fixed schedule (i.e.,

periodic push) and pages that are broadcast in response to

63

dient requests sent over a backchanne) (i.e., aperiodic pull).

The fundamental performance tradeoff between these two

approaches can be seen in in Figure 2. which shows results

from [Acha97]2. The x-axis in the figure models the number

of clients (all having identical access rates and distributions)

that are accessing data from the broadcast. Thus, at a value

of 250. the broadcast is serving 25 times as many clients than

at a value of 10. The y-axis indicates the average number

of items that a client must watch go by on the broadcast

before the item it wants appears.

g
CO

25 50 100
Think Time Ratio

250

Figure 2: Push vs. Pull for Broadcast

The fiat line in the figure (marked by diamonds) indi-

cates the performance of a pure push approach, in which all

data is broadcast repeatedly with no requests sent by the

clients. This figure was generated using a skewed (Zipfian)

access pattern over 1000 items. The broadcast schedule used

by the push approach was tailored to support a skewed ac-

cess pattern through the use of Broadcast Disks which allow

the frequency of broadcast, for an item to be based on that

item's popularity [Acha95a, Acha95b]. As can be seen in

the figure, the performance of pure push is independent of

the number of clients listening to the broadcast here. This

is a fundamental property of data broadcast using periodic

push — if there is a large overlap in the interests of clients,

it provides tremendous scalability in terms of client popula-

tion.

The other curve in the figure (marked by boxes) shows

the Tvrformnp''«' of s null-based approach, in which clients

submit requests to the server via the backchannel, and the

2 We briefly summarise these results here, interested readers are
referred to [Acha97]for more details

server broadcasts the requested pages in FIFO order. As

can be seen in the figure, the pull-based approach exhibits

an S-shaped behavior — it provides extremely fast response

time for a lightly loaded server, but as the server becomes

loaded, its performance degrades, until it ultimately stabi-

lizes (in this case, at a value of 500 items, or half the size of

the database being broadcast here).

The behavior of aperiodic pull in this case can be ex-

plained as follows. With a lightly loaded system, the server

is typically idle so it can respond immediately when a re-

quest is received. As the load increases, however, the server

saturates and becomes less responsive. Compared to peri-

odic push, it is clear that aperiodic pull demonstrates less

scalability in this case. It is, however, important to note

that aperiodic pull over a unicast channel would be far less

scalable — wait time would increase in an unbounded fash-

ion as the server approached saturation. In contrast us-

ing broadcast, the performance of aperiodic pull eventually

flattens out in this case, because of the overlap in the in-

terests of the client population. Once the server reaches the

state where all data items are in the FIFO queue, additional

clients receive all of their data by simply "snooping" on the

broadcast. In this case the performance of aperiodic pull

at saturation is worse than that of periodic push, because

the broadcast schedule generated by the FIFO discipline is

less well suited to the access pattern than the pre-computed

schedule used by periodic push. As discussed in [Acha97],

the problems of pull can be exacerbated if the server drops

client requests when it becomes overloaded.

The tradeoffs described above give an indication of the

kinds of concerns that must be balanced when choosing the

proper data delivery mechanism for a given situation. An-

other set of options arises in the organization of the nodes

for a DB1S, as described in the following section.

3 Design Options for Nodes

While the discussion so far has focused on the ways in which

data is communicated between computing devices, the nodes

in a Dissemination-Based Information System play a crucial

role as well: the nodes provide the glue that pastes var-

ious data distribution schemes together. A DBIS toolkit

should contain classes that model some of the basic features

'Because a single broadcast of an item satisfies all clients waiting
for that item, we do not enqueue a request for an item that is already
in the FIFO queue.

64

of nodes. This section outlines some of those features. 3.2 Caching

3.1 Classification

In an integrated DBIS. there will be three types of nodes:

(1) data sources, which provide the base data that is to be

disseminated: (2) clients, which are net consumers of infor-

mation: and (3) :nformnlion brokers, that acquire informa-

tion from other sources, add value to that information (e.g.,

some additional computation or organizational structure)

and then distribute this information to other consumers. By

creating hierarchies of brokers, information delivery can be

tailored to the needs of many different users.

Information brokers perform many important functions

in our architecture. While the previous discussion focused

primarily on different modes of data delivery, the brokers

provide the glue that binds these modes together. It is typ-

ically the expected usage patterns of the brokers that will

drive the selection of which mode of delivery to use. For

example, a broker that typically is very heavily loaded with

requests could be an excellent candidate for a push-based

delivery mechanism to its clients.

As we move upstream in the data delivery chain, brokers

look like data sources to their clients. Receivers of informa-

tion cannot detect the details of interconnections any further

upstream than their immediate predecessor. This principle

of network transparency allows data delivery mechanisms to

change without having global impact. Suppose that node B

is pulling data values from node A on demand. Further, sup-

pose that node C is listening to a cyclic broadcast from node

B which includes values that B has pulled from A. Node

C will not have to change its data gathering strategy if A

begins to push values to B; changes in links are negotiated

purely between the two nodes involved.

Of course, nothing is ever simple. In some cases, brokers

can also be sources by maintaining their own databases. In

this case, the hybrid broker can add data of its own to what

it receives from its upstream counterparts. The principle

of network transparency also protects clients from having

to depend on this situation. A data source, be it a pure

source, a broker, or a hybrid source, only guarantees that it

can provide specific data — independently of where it comes

from.

While nodes can perform many functions, the most ubiqui-

tous data management facility is caching. Unlike caching in

client-server systems, the path from data sources to a client

can be of length greater than two. Thus, items might be

cached at any of many points along the data path in the

network. Thus, caching in this context resembles the kind

of proxy caching that one might find in a wide-area network

(e.g., the Internet).

While the problems here are very similar to those of

any proxy caching scheme, the broad view of data move-

ment available in a DBIS makes the potential solutions much

richer. For example, if there are copies of a particular data

item in multiple caches, there will always be an issue of

how those copies are refreshed when the primary copy is

updated. One solution is to send invalidations to each client

cache manager. An invalidation message results in the purge

of the item from the cache. Alternatively, the new value

could be propagated to the client cache managers. For typ-

ical client/server systems, invalidation is usually preferable.

However, in our broadcast disk studies [Acha96b] we showed

that for periodic broadcast, performance can often be im-

proved using propagation.

The decision about how current to keep the cached copies

is the same as in other caching mechanisms. Once that has

been decided, the means by which it is achieved can vary.

In a DBIS, we could propagate (i.e., push) the changes to

the clients or wait for the client to request the item again

(i.e., pull). In the latter case, if a cache manager cares about

keeping items very current, it will have to poll the state of

the object often. It is interesting to note that if the data

delivery mechanism in a DBIS changes, the means by which

updates are propagated (or not) may also need to change.

Deciding which object to evict from the cache when a

new candidate arrives is another issue that must be ad-

dressed by any cache manager. Many systems use some

form of LRU for this purpose. We have shown in previous

work [Acha95a] that for some styles of data delivery (e.g.,

broadcast disks), LRU is not the most effective choice. For

cyclic data delivery, in which different items can have dif-

ferent arrival frequencies, a cost-based caching scheme per-

forms significantly better.

In a DBIS, the modes of data delivery might change.

In such an environment, the caching policy could change

65

to match the prevailing conditions. We will need heuristics

for deciding the appropriate caching policies for a particular

configuration of distributed components. As an example, if

node B initially pulls data from node .4. B might reasonably

use LRU as its caching policy. When A creates a broadcast

disk which is read by B, B might then change its caching

policy to a cost based scheme similar to the one that we

propose in [Acha95a].

3.3 Value-Added Nodes

Some nodes may also add value to data as it passes through,

by performing specific computations on that data. The com-

putations can be simple or complex, or they can act on single

values or sets of values. Other nodes may simply pass values

on to other nodes.

As an example, suppose node A pushes stock prices for

Fortune 500 companies that are picked up by node B. Node

B keeps a database of previous stock prices and when a new

price for the day is picked up from node A. it calculates the

difference between the most current price and yesterday's

close, and pushes this value out to yet another community.

Node B is a push-based, value-added server. Of course, it

need not be based on push. Other clients could pull stock

deviations from B as well.

Another kind of value-added service that a node can per-

form is merging of values from multiple sources. Merging can

occur in several ways. The first involves multiple sources

that maintain similar information. The merge node can

make the most reliable or most current version of a value

available. Alternatively, multiple sources may maintain a

set of values which the merge node combines to a single

value. An example of this might involve nodes that maintain

demographic information for towns including their current

population. Another node may read these values and con-

solidate them into a single population figure for the state.

Nodes can also perform the service of filtering. A filtering

node will receive a large volume of data from another node,

only some fraction of which it makes available to its clients.

For example, a node could receive all stock prices from the

NYSE and provide information about only the Fortune 500

stocks to its clients.

3.4 Recoverable Nodes

Often it will be useful to make guarantees about the reliabil-

ity of some node. Thus, nodes that implement some degree

of recoverability will be a useful component in a DB1S. Con-

sider a node that must guarantee the delivery of the latest

version of IBM's stock price. Such a node must not lose its

information in the event of a failure. That is, if the informa-

tion was received, then the node must be able to guarantee

that it will eventually be made available to its clients.

Of course, having recoverable brokers is not enough on

its own to guarantee that nodes will not miss disseminated

information while they are down. In order to address this

issue, a scheme like reliable multicasting would have to be

used. Reliable multicasting will eventually deliver all mes-

sages, but it cannot make real-time guarantees about when

an object will arrive.

3.5 The Burden of Push

As mentioned in Section 2.3, any node that provides a push

service must do so on the basis of some knowledge of the

access patterns of its client base. If the node pushes data

that few clients care about, then bandwidth is wasted. The

trick is to broadcast items that are of interest to a large

segment of the user community. This, of course, is only-

possible if there is high commonality of interest for at least

some data items.

In order to optimize its push schedule, the server must

rely on profiles of user needs. Profiles could be learned by

servers if clients provide feedback about the effectiveness of

the push schedule. Alternatively, a client could communi-

cate a profile to the server at appropriate times, such as

when it begins to listen to the push, at regularly scheduled

intervals, or whenever the client notices that the current

schedule deviates significantly from what it would like to

see.
What would such a profile look like? A profile is very

much like a continuously executing query [Terr92]. In other

words, it is a predicate that indicates the items that the

client would like to see. It is continuously executing because

the server will push items as long as there are currently valid

profiles that match the items.

Profiles can be interpreted to mean that whenever a new

item is added to the database that matches a profile, the

owner of that profile will receive the new data. On the

66

olher hand, the profile could be treated more as a hint to

the server indicating interest with no requirement on the

server's part to send matching items. In this case, the server

may choose to conserve bandwidth and not send a matching

item in order to best serve the client community as a whole.

4 Systems Viewed as DBIS

In this section, we describe some existing systems using the

concepts of our DBIS framework.

4.1 PointCast

PointCast is a dissemination service that has attracted a

large population of users. It obtains profiles from users

that describe their interests, and then uses these profiles

to assemble and update customized "newspapers" from a

database of current stories.

The PointCast system has been touted as one of the first

push-based systems. This is not exactly true. Other sys-

tems such as Teletex [AmmaSö]. BCS at MIT [Giff90], and

Datacycle [Herm87] used push long before PointCast. How-

ever. PointCast was one of the first push-based systems to

achieve wide-spread use. It is instructive, therefore, to see

exactly how push is used in PointCast 1.0 4.

From the point of view of a DBIS, the use of push within

PointCast is extremely limited. In fact, in terms of the net-

work architecture, push is non-existent; that is, the flow

of requests and responses within the global architecture is

pull-based. The PointCast client on a user's workstation

generates requests for news stories that match the user's

profile. For example, if the user indicates an interest in the

computer industry, the PointCast client polls the PointCast

server for news stories with the keyword "computer indus-

try" whenever the PointCast screen saver is enabled. All of

these requests can generate lots of network traffic.

So, where's the push? If we look at Figure 3, we see

that there are essentially two processes in the client ma-

chine. One of these processes is responsible for pulling the

latest news stories down to the user's machine, and the

other is responsible for displaying these stories on the user's

screen. The push really occurs between these two compo-

nents. When the pull-based story acquisition module gets

a new story, it pushes it to the screen manager. From the

4 Hereafter, referred to u Pointcait.

user's point of view, this is push because things are happen-

ing to the screen without any intervention. The use of push

as a technique for managing heavy network loads, however,

is not part of the design.

4.2 Broadcast Disks

Our own work on broadcast disks is based on a model of

data delivery that is virtually the direct opposite of that

described above for PointCast (see Figure 4).

In our model, an application process on the client work-

station behaves exactly as it would in a traditional pull-

based environment. It generates pull requests as it needs

data and blocks until that data is received.

The server, however, proactively sends data to the client

community in advance of any request (i.e., push). A process

on the client listens to the broadcast stream and picks up

data items for which the application might be waiting Thus,

the places where pushes and pulls happen have been inverted

over the PointCast case.

It should be noted that in the broadcast disk case, the

push is periodic and is scheduled by the server. In the Point-

cast case, the pull is also periodic, but the interval is set by

the user.

4.3 SIFT

The SIFT [Yan95] system was developed at Stanford Univer-

sity as a way to disseminate documents to a user community.

SIFT combines data management ideas from information

retrieval with a publish/subscribe model for dissemination.

We describe the way the publish/subscribe model works in

terms of our DBIS architecture.

Looking at Figure 5, we see three active components: the

document source, the SIFT server, and a SIFT client (one of

potentially many). The connection between the document

source and the SIFT server (on the left side of the figure) is

push-based, unicast, and aperiodic. The document source

could alternatively deliver new documents through a 1-to-

n broadcast medium, such as a satellite feed, if there were

multiple interested recipients (SIFT servers or otherwise).

A backchannel (not shown in the figure), is used only to set

up the initial connection. Thereafter, the document source

forwards all new documents to the SIFT server. There is no

filtering that happens on this link. We could think of the

profile held at the document source for the SIFT server as

67

Pointeast 1.0
Server

PULL
user

Interlace

Client

Figure 3: Pointeast 1.0

Broadcast
Disk

Server
PUSH

Figure 4: Broadcast Disks

being send everything.

The connection between the SIFT server and a given

SIFT client (shown on the right side of the figure) is also

push-based, unicast. and aperiodic. In this case, though, the

client profile that is held at the SIFT server is customized for

each client. It consists of a series of keywords and weights

that describe documents of interest to that client. The SIFT

server provides novel technology for indexing client profiles.

Such an index is used for matching profiles against newly ar-

riving documents. This indexing technique allows the server

to accommodate a large client population with reasonable

performance. The original SIFT prototype disseminated en-

tire articles to clients. With the existence of the web, it

becomes possible to send short article descriptions plus the

corresponding URLs to conserve bandwidth.

It should be noted that clients get exactly what their

profiles specify and nothing more. This is in contrast to a 1-

to-n (broadcast) style of delivery in which all clients see the

same information stream. It is the server's responsibility to

optimize this stream to suit the needs of the largest number

of users. It is unlikely that such a stream will be optimal

for any one user.

5 Putting it All Together

In the preceding discussion, we described a vision of how dis-

tributed information systems should be built in the future.

Our framework focused on techniques for delivering data in

wide-area network settings in which nodes and links reflect

extreme variation in their operating parameters. By adjust-

ing the delivery mechanism to match these characteristics.

we believe that we can achieve high performance and scala-

bility without the need to invest in additional hardware. In

this section, we briefly discuss our approach to this problem

and outline some of the open research questions.

5.1 Toolkit Approach

We intend to realize our solutions to the problems of design-

ing a DBIS through a toolkit that provides the proper com-

ponents from which any DBIS could be built. This toolkit

can be thought of as a set of object classes that support

concepts such as network connections and local caches.

A key part of the toolkit will be a set of classes to allow

distributed nodes to negotiate in order to establish a proper

connection. This is required at several levels. At the highest

level, the nodes must agree on how data is to be transferred.

A client node that is relying on data from some server must

know whether that server will be using push or accepting

requests. There are also handshaking protocols that must

occur at lower levels. For example, if a push-based broadcast

connection is to be established in an Ethernet, the nodes

must agree on which Ethernet address will be used for that

broadcast. The parties must also agree on the parameters

that will be used to configure that broadcast. For example,

if it is a broadcast disk, the frequency of broadcast of each

item is of interest to the clients.

The usefulness of a toolkit will rely on the precise defi-

nition of the DBIS classes. These classes must be of general

utility. Also, as indicated in Section 2.3, the definition of

68

% Document i Push
Source j unicast, aperiodic

Figure 5: High-Level SIFT Architecture

these classes must be based on a substantial body of exper-

imental results that help to delineate the sometimes subtle

tradeoffs.

5.2 Dynamic Reconfiguration

A network can be characterized by prevailing loads on the

nodes and the connections. This characterization changes

rapidly, and a responsive DBIS must be able to adapt to

these changes. Thus, our vision of a fully functional DBIS

includes facilities to support the dynamic reconfiguration of

the data delivery mechanisms.

A key element of a reconfiguration facility is a statis-

tics gathering component that collects the right performance

numbers and that can intelligently select among the avail-

able delivery options. This is not a simple matter. Our pre-

vious experiments in the area of broadcast disks has shown

that the design space here is very complex with many places

in which intuitions from more traditional distributed system

design often produces poor results.

5.3 Some Design Issues

In addition to the plumbing issues that we have discussed

so far, there are some higher-level issues that must be ad-

dressed in developing an integrated DBIS. In the following,

we briefly outline some of these issues:

• Bandwidth Allocation - For a given link, policies are

needed for allocating bandwidth among the various

data delivery mechanisms.

• Push Scheduling - For the push-based approaches, in-

telligent scheduling is necessary in order to obtain the

maximal benefit from the available bandwidth. Schedul-

ing must also take into account the likelihood and

distribution of tiausmission errors. Also, for periodic

push, the broadcast should include index and/or sched-

ule information that describes the objects that are to

ajjpeaj in the upcoming broadcast. Such information

allows clients to minimize the amount of time and/or

processing they devote to monitoring the broadcast

and can aid in storage management decisions.

• Client Storage Management - Clients must allocate

their storage resources among the data obtained through

the various delivery mechanisms. Furthermore, as stated

earlier, different methods of data delivery impose dif-

fering demands on the policies for client caching and

prefetching. Furthermore, in some cases (e.g., mobil-

ity), storage management must also take into account

the likelihood of disconnection and of data becoming

stale due to updates or expiration.

• User Profiles and Feedback - Profiles of client needs are

key for making allocation, scheduling and other policy

decisions at both clients and servers. The form of the

profiles will be important to achieve the most effective

use of the medium. For example, access probabilities

are one specific representation of the client needs. The

server must also have effective models for combining

client profiles. The integration of a backchannel from

clients to servers is needed to allow for updating pro-

files and making additional requests.

• Security Issues - Another set of important issues that

must be addressed revolves around the security and

privacy concerns that arise in any distributed infor-

mation system. The emphasis on one-to-N communi-

cation in a DBIS, however, increases the significance

of such issues.

• Consistency Issues - The final issue we list here is the

maintenance of data consistency, particularly in the

face of possibly intermittent connection. Two types of

consistency must be considered. First, guarantees on

the timeliness of individual data items must be pro-

vided if required by the clients. Second, mutual con-

sistency across multiple items will be required in some

69

instances. AU type? of consistency must be provided

in a flexible manner, so that tradeoffs between consis-

tency and responsiveness can be made on a case-by-

case basis.

6 Related Work

Work on distributed object computing has generated many

important standards and systems. CORBA [OMG91] and

DCE [OSF9-J], for example, are two important approaches

to system interoperability. This work is not incompatible

with the notion of a DB1S. A DB1S can be thought of as

infrastructure for such object-oriented middleware.

There is much previous work that relates to the archi-

tectural issues of a DB1S. The brief discussion that follows

samples some of the work that is most related to the issues

presented in this paper.

The management of data in distributed settings has a

long history. The preponderance of previous work assumes

that data is requested when needed (i.e.. pull) and that

servers respond to these requests in an orderly fashion. Some

of this work has occurred in a client/server database setting

[Fran96a] while other work has been done in the distributed

file system context [Levy90]. There has been a lot of work

on caching in these environments, much of which has fo-

cused on the maintenance of cache consistency in the face

of updates.

More recently, there has been work on data management

issues for wireless environments [Katz94]. Some of work

in this area has focused on satellite-based systems [Dao96,

Dire96] in which the downstream bandwidth is quite high.

The idea of the publish/subscribe model as a dissemina-

tion mechanism has been used in many contexts including

SIFT [Yan95] and the Information Bus[Oki93].

There has also been work on broadcasting in Teletex sys-

tems [Amma85, Wong88]. [Wong88] presents an overview

of some of the analytical studies on one-way, two-way and

hybrid broadcast in this framework.

The Datacycle Project [Bowe92, Herm87] at Bellcore in-

vestigated the notion of using a repetitive broadcast medium

for database storage and query processing. An early ef-

fort in information broadcasting, the Boston Community

Information System (BCIS) is described in [GiffQO]. BCIS

broadcast news articles and information over an FM chan-

nel to clients with personal computers specially equipped

with radio receivers. Both Datacycle and BCIS used a flat

broadcast (i.e., all items have the same frequency). The mo-

bility group at Rutgers [Imie94a, Imie94b] has done signifi-

cant work on data broadcasting in mobile environments. A

main focus of their work has been to investigate novel ways

of indexing in order to reduce power consumption at the

mobile clients. Some recent applications of dissemination-

based systems include information dissemination on the In-

ternet [Yan95, Best96], and Advanced Traveler Information

Systems [Shek96].

Our work on Broadcast Disks differs from these in that

we consider multi-level disks and their relationship to cache

management. In [Acha95a], we proposed an algorithm to

generate Broadcast Disk programs and demonstrated the

need for cost-based caching in this environment. Recently,

[Baru96] gave an algorithm to determine the parameters

controlling a broadcast program. In [Acha96a], we showed

how opportunistic prefetching by the client can significantly

improve performance over demand-driven caching. More re-

cently, in [Acha96b], we studied the influence of volatile data

on client performance and showed that the Broadcast. Disk

environment can be made very robust in the presence of up-

dates. In [Acha97], we explored the tradeoff between cyclic

broadcast and pull.

7 Conclusions

The increasing ability to interconnect computers through

internetworking, mobile and wireless networks, and high-

bandwidth content delivery to the home, has resulted in

a proliferation of dissemination-oriented applications. A

key attribute of many such applications is their huge scale.

These applications present new challenges for data manage-

ment throughout all components of a distributed informa-

tion system. We have proposed the notion of a dissemination-

based information system that integrates many different data

delivery mechanisms and types of information brokers. We

described some of the unique aspects of such systems and

discussed how several existing dissemination-based architec-

tures fit in to the DBIS model.

The ideas presented in this paper have grown out of our

previous work on the Broadcast Disks paradigm for data

delivery. A key lesson from that work was the importance

of applying a data management perspective to distributed

systems architecture issues. We are currently completing

70

a prototype that combines the push-based Broadcast Disks

with a pull-based broadcast model. We vie«- that proto-

type as the first step in the development of a generic DBIS

toolkit that will support the creation of a variety of large-

scale dissemination-based applications across several differ-

ent communication media.

Acknowledgments

We would like to thank Swarup Acharya for his contribu-

tions to these ideas through the development of the Broad-

cast Disks paradigm and Demet Aksoy who has provided

us with important insights into the properties of broadcast

scheduling.

References

[Acha95a] S. Acharya, R. Alonso, M. Franklin, S. Zdonik,
"Broadcast Disks: Data Management for Asymmetric
Communication Environments", Proc. ACM SIGMOD
Conj., San Jose. CA, May, 1995.

[Acha95b] S.
Acharya, M. Franklin, S. Zdonik, "Dissemination-based
Data Delivery Using Broadcast Disks", IEEE Personal
Communications. 2(6). December. 1995.

[Acha96a] S. Acharya. M. Franklin. S. Zdonik, "Prefetching
from a Broadcast Disk", 12th International Conference
on Data Engineering, New Orleans. LA, February. 1996.

[Acha96b] S. Acharya. M. Franklin, S. Zdonik, "Dissemi-
nating Updates on Broadcast Disks", Proc. 22nd VLDB
Conj.. Bombay. India, September, 1996.

[Acha97] S. Acharva, M. Franklin, S. Zdonik, "Balancing
Push and Pull for Data Broadcast", Proc. ACM SIGMOD
Conj., Tucson. AZ, May, 1997.

[Amma85] M. Ammar, J. Wong, "The Design of Teletext
Broadcast Cycles", Per}. Evaluation^ (1985).

[Baru96] S. Baruah and A. Bestavros, "Pinwheel Scheduling
for Fault-tolerant Broadcast Disks in Real-time Database
Systems", Technical Report TR-96-023, Boston Univer-
sity, August, 1996.

[Best96] A. Bestavros, C. Cunha, "Server-initiated 'Docu-
ment Dissemination for the WWW", IEEE Data Engi-
neering Bulletin, 19(3), September, 1996.

[Bowe92] T. Bowen, G. Gopal, G. Herman, T. Hickey, K.
Lee, W. Mansfield, J. Raitz, A. Weinrib, "The Datacycle
Architecture", CACM, 35(12), December, 1992.

[Care91] M. Carey, M. Franklin, M. Livny, E. Shekita,
"Data Caching Tradeoffs in Client-Server DBMS Archi-
tect^^", Pi^. ACM SIGMOD Con}., Denver, June,
1991.

[Dao96] S. Dao, B. Perry, "Information Dissemination in
Hybrid Satellite/Terrestrial Networks", IEEE Data Engi-
neering Bulletin, 19(3), September, 1996.

[Dire96] Hughes Network Systems, DirecPC Home Page.
http://wws.direcpc.coBi/, Oct, 1996.

[Erik94] H. Erikson,"MBONE: The Multicast Backbone",
CACM, 37(8), August, 1994.

[Fran96a] M. Franklin, Client Data Caching: A Foundation
for High Performance Object Database Systems, Kluwer
Academic Publishers, Boston, MA, February, 1996.

[Fran96b] M. Franklin, S. Zdonik, "Dissemination-Based In-
formation Systems", IEEE Data Engineering Bulletin.
19(3), September, 1996.

[Giff90] D. Gifford, "Polychannel Systems for Mass Digital
Communication", CACM, 33(2), February, 1990.

[Glan96] D. Glance. "Multicast Support for Data Dissem-
ination in OrbixTalk", IEEE Data Engineering Bulk tin.
19(3), September, 1996.

[Herm87] G. Herman, G. Gopal, K. Lee, A. Weinrib.
"The Datacycle Architecture for Very High Throughput
Database Systems", Proc. ACM SIGMOD Con}.. San
Francisco, CA, May, 1987.

[Imie94a] T. Imielinski, B. Badrinath, "Mobile Wireless
Computing: Challenges in Data Management", CACM,
37(10), October, 1994.

[Imie94b] T. Imielinski, S. Viswanathan, B. Badrinath.
"Energy Efficient Indexing on Air", Proc. ACM SIGMOD
Con}., Minneapolis, MN, May, 1994.

[Katz94] R. Katz, "Adaption and Mobility in Wireless In-
formation Systems", IEEE Personnal Comm., 1st Quar-
ter, 1994.

[Levy90] Levy, E., Silbershatz, A., "Distributed File Sys-
tems: Concepts and Examples", ACM Computing Sur-
veys, 22(4), December, 1990.

[OMG91] Object Management Group and X/Open, "Com-
mon Object Request Broker: Architecture and Specifica-
tion", Reference OMG 91.12.1, 1991.

[Oki93] B. Oki, M. Pfluegl, A. Siegel, D. Skeen, "The Infor-
mation Bus - An Architecture for Extensible Distributed
Systems", Proc. 14th SOSP, Ashville, NC, December,
1993.

[OSF94] Open Software Foundation, "Introduction to OSF
DCE", Prentice Hall, Englewood Cliffs, NJ, 1994.

[Shek96] S. Shekhar, A. Fetterer, D. Liu, "Genesis: An
Approach to Data Dissemination in Advanced Traveller
Information Systems", IEEE Data Engineering Bulletin,
19(3), September, 1996.

[Terr92] D. Terry, D. Goldberg, D. Nichols, "Continuous
Queries Over Append-Only Databases", Proc. ACM SIG-
MOD Conf., San Diego, CA, June, 1992.

[Wong88] J.Wong, "Broadcast Delivery", Proceedings of the
IEEE, 76(12), December, 1988.

[Yan95] T. Yan, H. Garcia-Molina, "SIFT - A Tool
for Wide-area Information Dissemination", Proc. 1995
USENIX Technical Conference, 1995.

71

[ZdonfM] S. Zdonik. M. Franklin. R. Alonso. S. Acharya
"Are 'Disks in the Air" Just Pie in the Sky? , IEEE
Workshop on Mobile Computing Systems and Applica-
tions. Santa Cruz. CA. December. 199-4.

72

Appendix F

Data in Your Face: Push Technology in Perspective

73

a Data In Your Face": Push Technology in Perspective*

Michael Franklin
University of Maryland

franklin@cs.umd.edu

Stan Zdonik
Brown University

sbz@cs.brown.edu

Abstract

Push technology has recently generated a tremendous
amount of media attention, commercial activity, and contro-
versy. The wide range of opinions on push is understand-
able given that it represents a major departure from the way
distributed information systems have traditionally been built.
Adding to the noise, however, is confusion about the basic
principles of push and where it fits in to the world of data de-
livery. For example, many discussions on the topic blur the
distinction between push and broadcast. We argue that this
confusion stems from two fundamental causes: First, push
is just one dimension of a larger design space of data deliv-
ery mechanisms. Second, networked information systems can
employ different data delivery options between different sets
of information producers and consumers. In this short paper
we characterize the design space for dissemination-based in-
formation systems and applications, and show how current
"push " solutions fit into this space. We then use this frame-
work highlight how the implementation of current Internet-
based push solutions differs from the appearance that they
present to users.

1 Introduction

Push technology stems from a very simple idea. Rather than
requiring users to explicitly request (i.e., "pull") the informa-
tion that they need, data can be sent to users without hav-
ing them specifically ask for it. The advantages of push are
straightforward. The traditional pull approach requires that

'This work has been partially supported by Rome Labs agree-
ment number F30602-97-2-0241 under DARPA order number
F078. by the NSF under grant IRI-9501353, and by research grants
from Intel and NEC.

To anpear in the ACM SIGMOD International Confer-
ence on the Management of Data, Seattle, WA, June,
1998.

users know a priori where and when to look for data or that
they spend an inordinate amount of time polling known sites
for updates and/or hunting on the network for relevant sites.
Push relieves the user of these burdens. The problems of
push are also fairly obvious. Push transfers control from the
users to the data providers, raising the potential that users re-
ceive irrelevant data while not receiving the information they
need. These potential problems can arise due to issues rang-
ing from poor prediction of user interests to outright abuse
of the mechanism, such as "spamming". The "in-your-face"
nature of push technology is the root of both its potential ben-
efits and disadvantages.

Push technology has been around in various forms for as
long as people have been communicating. Examples range
from newspapers, to telephones, to radio and television, to
E-mail. Early work on using computer networks for pushing
data was performed in the 1980's. The Boston Community
Information System at MIT [Giff90], Teletext systems for
distributing data over broadcast media [Amma85, Wong88],
and the Datacycle database machine [Herm87], are all exam-
ples of systems that incorporated some form of push technol-
ogy. Recently, however, the combination of push technology
with the Internet and Web (sometimes referred to as Webcast-
ing) has generated a ground swell of excitement, commercial
activity, and controversy.

1.1 The Push Phenomenon
In February 1996, PointCast made its client software avail-
able for free downloading over the Internet, setting off a
wave of interest in push technology. The idea was appeal-
ing: rather than using your idle desktop machine as a dis-
play ground for flying toasters, PointCast would turn it into
an active information terminal that would display headlines,
weather forecasts, stock prices, sports scores, etc., with the
appearance of having real-time updates. By specifying apro-
ße, users could indicate their interests to the system, and the
display would be tailored to these interests.

For anyone who tried the software, the reaction was im-
mediate; this represented a paradigm shift in the way one
could think about using the Internet as an information deliv-
ery tool. Push technology on the Internet represented a new
and untapped medium. The computer trade press became in-

74

undated with articles about push technology and dozens of
companies touting push-based solutions arrived on the scene.
A new jargon of data delivery was developed, with terminol-
ogy borrowed from broadcast media. Users of push technol-
ogy could rune into channels that contained broadcasts of in-
formation on particular topics.

By the end of 1996. the excitement had spilled over into
the mainstream press. A steady stream of articles about push
technology appeared in venues such as the New York Times
and the Wall Sneer Journal* In February 1997, Business
Week magazine published a Special Report section entitled
"A Way Out of the Web Maze", which argued that Webcast-
ing could solve many of the Web's problems, such as infor-
mation overload and the inability for users to find the data
they need. Similar sentiments were echoed by numerous ven-
dors and technology pundits.

The peak of the media hype for push technology was
reached in March of 1997 when the cover article of Wired
magazine blared: "Push! Kiss your browser goodbye". This
article began by declaring: "Remember the browser war be-
tween Netscape and Microsoft? Well forget it. The Web
browser itself is about to croak. And good riddance.". While
the article was certainly provocative and clearly overstated,
the argument it made was simply that push technology would
change the Web from a passive library of information into
a networked, immersive medium for information and enter-
tainment delivery. Despite this simple message, the article
seemed to epitomize both the promise of push technology and
the potential for overselling its virtues.

1.2 The Inevitable Backlash

Around the time of the Wired article, the voices of dissent
began to make themselves heard. A March 1997 New York
Times CyberTimes article by James Gleick stated: "... the
promotion of Push is the silliest piece of puffery to waft
along in several seasons. ... The failure of Push is preor-
dained". A July 1997 article in the on-line net-zine webmon-
key (published by the same company that publishes Wired),
was entitled simply "Why Channels Suck". A somewhat
more technical article at the CNET on-line site entitled "Net-
works Strained By Push", described a study indicating that
push technologies were using an inordinate portion of corpo-
rate network bandwidth. Finally, a Byte magazine article in
August 1997 had the tag line: "Web push technology is ex-
ploding — even though there's no such thing.". The Byte ar-
ticle went on to explain (correctly) that current push technol-
ogy is "really pull++".

1 Many of these articles had titles such as "When Push Comes to
Shove", "The Pull of Push", or "X Gets Pushy" (where X is some
product or company). The observant reader will notice that we have
resisted such temptations for this paper.

1.3 The Current Situation

Recently, the media turmoil over push has settled down and
expectations for the technology (at least for the short term)
have lowered to arguably more reasonable levels. Still, the
commercial activity in the area is impressive. As of Jan-
uary 1998, a register of push technology vendors listed 49
companies with announced products (see David Strom's site
at http://www.strom.com/imc/t4a.html). Many other com-
panies who have not yet announced products are working
on push-based solutions. The major web browser vendors,
Netscape and Microsoft, have both incorporated push into
their products.

A development indicating a degree of maturation of the
field is Microsoft's proposal of the Channel Definition For-
mat (CDF) standard to the World Wide Web Consortium
(W3C). CDF is a language that web publishers can use to turn
their content into "Channels" that can be exploited by push
(or "pull++") technologies. CDF allows the specification of
metadata about a website, including a searchable title and ab-
stract and information about the structure and update sched-
ule of the site. A number of the major push vendors such as
PointCast, BackWeb, and AirMedia have expressed support
for the proposed standard. Such a standard raises the poten-
tial for push technology to be more widely integrated into the
fabric of the Internet.

1.4 Sorting it All Out

The wide range of opinions on the pros and cons of push tech-
nology is understandable, given the fact that it is a major de-
parture from the way distributed information systems have
traditionally been built. Adding to the noise, however, is a
wide-spread confusion about the basic principles of push and
where it fits in to the world of data delivery. In this short pa-
per we argue that this confusion stems from two fundamen-
tal causes: First, push is just one dimension of a larger de-
sign space of data delivery mechanisms. We identify three
dimensions for data delivery mechanisms (push vs. pull is
one of them) and show how different choices along these di-
mensions interact. Second, networked information systems
can employ different data delivery options between different
sets of information producers and consumers. Thus, complex
systems will likely contain mixtures of push and pull (along
with the other options) at various points in the network. In
such a situation, it is inappropriate to identify an entire sys-
tem as being "push-based" or "pull-based".

In the following, we present an overview of our ideas on
data dissemination in order to provide a framework for think-
ing about push technology in the larger context of networked
information systems. Our intent is to clarify some of the is-
sues surrounding push technology and to characterize the de-
sign space for data delivery in dissemination-based informa-
tion systems and applications.

75

2 Fundamental Properties

In this section, we present an overview of data delivery, fo-
cusing on how the notion of data push fits in with the other di-
mensions of the design space for delivery mechanisms. We
then describe why it is often inappropriate to refer to com-
plex distributed systems as simply "push-based" or "pull-
based". A more detailed discussion of these issues can be
found in [Fran97].

2.1 Options for Data Delivery

Support for different styles of data delivery allows a dis-
tributed information system to be optimized for various
server, client, network, data, and application properties. We
have identified three main characteristics that can be used to
compare data delivery mechanisms: (1) push vs. pull; (2) pe-
riodic vs. aperiodic; and (3) unicast vs. 1-to-N. While there
are numerous other dimensions that should be considered,
such as fault-tolerance, ordering guarantees, error properties,
network topology, etc., we have found that these three char-
acteristics provide a good initial basis for discussing many
popular approaches. In particular, we argue that all three of
these characteristics must be considered in order to make in-
telligent choices about delivery mechanisms for specific situ-
ations. Figure 1 shows these characteristics and how several
common mechanisms relate to them.

2.1.1 Client Pull vs. Server Push

We first focus on push vs. pull. Current database servers and
object repositories manage data for clients that explicitly re-
quest data when they require it. When a request is received
at a server, the server locates the information of interest and
returns it to the client. This request-response style of opera-
tion is pull-based — the transfer of information from servers
to clients is initiated by a client pull. In contrast, as discussed
in the introduction, push-based data delivery involves send-
ing information to a client population in advance of any spe-
cific request. With push-based delivery, the server initiates
the transfer.

2.1.2 Aperiodic vs. Periodic

Both push and pull can be performed in either an aperiodic or
periodic fashion. Aperiodic delivery is event-driven — a data
request (for pull) or transmission (for push) is triggered by an
event such as a user action (for pull) or data update (for push).
In contrast, periodic delivery is performed according to some
pre-arranged schedule. This schedule may be fixed, or may
be generated with some degree of randomness.2 An applica-

2 For the purposes of this discussion, we do not distinguish be-
tween fixed and „mJomized schedules. Such a distinction is im-
portant in certain applications. For example, algorithms for con-
serving energy in mobile environments proposed by ImielinsKi et

tion that sends out stock prices on a regular basis is an exam-
ple of periodic push, whereas one that sends out stock prices
only when they change is an example of aperiodic push.

2.1.3 Unicast vs. 1-to-N

The third characteristic of data delivery mechanisms is
whether they are based on unicast or 1-to-N communication.
With unicast communication, data items are sent from a data
source (e.g., a single server) to one other machine, while 1-
to-N communication allows multiple machines to receive the
data sent by a data source.3

Two types of 1-to-N data delivery can be distinguished:
multicast and broadcast. With multicast, data is sent to a spe-
cific subset of clients who have indicated their interest in re-
ceiving the data. Since the recipients are known, given a two-
way communications medium it is possible to make multi-
cast reliable; that is, network protocols can be developed that
guarantee the eventual delivery of the message to all clients
that should receive it. In contrast, broadcasting sends infor-
mation over a medium on which an unidentified and possibly
unbounded set of clients can listen.

2.2 Classification of Delivery Mechanisms

It is possible to classify many existing data delivery mecha-
nisms using the characteristics described above. Such a clas-
sification is shown in Figure 1. We discuss several of the
mechanisms below.

Aperiodic Pull - Traditional request/response mecha-
nisms use aperiodic pull over a unicast connection. If in-
stead, a 1-to-N connection is used, then clients can "snoop"
on the requests made by other clients, and obtain data that
they haven't explicitly asked for (e.g, see [Acha97, Akso98]).

Periodic Pull - In some applications, such as remote sens-
ing, a system may periodically send requests to other sites to
obtain status information or to detect changed values. If the
information is returned over a 1-to-N link, then as with re-
quest/response, other clients can snoop to obtain data items as
they go by. Most existing Web or Internet-based "push" sys-
tems are actually implemented using Periodic Pull between
the client machines and the data source(s).

Aperiodic Push - Publish/subscribe protocols are be-
coming a popular way to disseminate information in a net-
work [Oki93, Yan95, Glan96]. In a publish/subscribe sys-
tem, users provide information (sometimes in the form of a

al. [Imie94] depend on a strict schedule to allow mobile clients
to "doze" during periods when no data of interest to them will be
broadcast 3 Some systems attempt to implement a 1-to-N style of data de-
livery using unicast (i.e., by sending identical, individual messages
to multiple clients). As discussed in Section 3, this type of pseudo-
broadcast can result in tremendous bandwidth and server overload
problems. For this reason, we classify such systems as "unicast-
based" in our taxonomy.

76

Pull Push

Aperiodic Periodic Aperiodic Periodic

Unicast 1-tc-N Unicast 1-tc-N Unicast 1-to-N Unicast 1-to-N

request/
response

request/
response
w/snooping

polling polling
w/snooping

e-mailing
lists

publish/
subscribe

publish/
subscribe

e-mail list
digests

broadcast
disks

Figure 1: Data Delivery Options

profile) indicating the types of information they wish to re-
ceive. Publish/subscribe is push-based; data flow is initiated
by the data sources, and is aperiodic, as there is no prede-
fined schedule for sending data. Publish/subscribe protocols
are inherently 1-to-N in nature, but due to limitations in cur-
rent Internet technology, they are often implemented using
individual unicast messages to multiple clients. Examples of
such systems include Internet e-mail lists and some existing
"push" systems on the Internet. True 1-to-N delivery is pos-
sible through technologies such as IP-Multicast, but such so-
lutions are typically limited to individual Intranets or Local
Area Networks.

Periodic Push - Periodic push has been used for data dis-
semination in many systems. An example of Periodic Push
using unicast is Internet mailing lists that send out "digests"
on a regular schedule. For example, the Majordomo system
allows a list manager to set up a schedule (e.g., weekly) for
sending digests. Such digests allow users to follow a mailing
list without being continually interrupted by individual mes-
sages. There have also been many systems that use Periodic
Push over a broadcast or multicast link. These include Tele-
Text [Amma85, Wong88], DataCycle [Herm87], Broadcast
Disks [Acha95a, Acha95b] and mobile databases [Imie94].

2.3 End-to-End Considerations

The second source of confusion about push technology is
the fact that networked information systems typically contain
many interconnected nodes. These nodes may be (logically)
organized in various structures, and different data delivery
mechanisms may be used between different sets of nodes.
Given the potential heterogeneity of delivery mechanisms in
a complex system, it is often not appropriate to describe the
entire end-to-end (i.e., data source to consumer) system as
"push-based" or "pull-based".

In general, a distributed information system can be though
of as having three types of nodes: (1) data sources, which
provide the base data that is to be disseminated; (2) clients,
which are net consumers of information; and (3) information
brokers, (or agents, mediators, etc.) that acquire information
from other sources, add value to that information (e.g., some

additional computation or organizational structure) and then
distribute this information to other consumers. By creating
hierarchies of brokers, information delivery can be tailored
to the needs of many different users.

While the previous discussion has focused primarily on
different modes of data delivery, the brokers provide the glue
that binds these modes together. In many cases, the expected
usage patterns of the brokers can drive the selection of which
mode of delivery to use. For example, a broker that typically
is very heavily loaded with requests could be an excellent
candidate for a push-based delivery mechanism to its clients.

As we move upstream in the data delivery chain, brokers
look like data sources to their clients. Receivers of infor-
mation cannot detect the details of interconnections any fur-
ther upstream than their immediate predecessor. This prin-
ciple of network transparency allows data delivery mecha-
nisms to change without having global impact. Suppose that
node B is pulling data values from node A on demand. Fur-
ther, suppose that node C is listening to a periodic broadcast
from node B which includes values that B has pulled from A.
Node C will not have to change it's data gathering strategy if
A begins to push values to B. Changes in links are of inter-
est only to the nodes that are directly involved. Likewise, this
transparency allows the "appearance" of the data delivery at
any node to differ from the way the data is actually delivered
earlier in the network. This ability to change the appearance
of data delivery, is at the root of much of the confusion sur-
rounding push Technology.

Figure 2 shows a simple example of the importance of
considering multiple network components and the impact of
transparency. The figure shows how data delivery is per-
formed in the initial versions of PointCast. To the user sitting
at the screen, the system appears to be "push-based"; data
flows across the screen without any user intervention. Due to
current limitations of the Internet, however, that data is ac-
tually brought over to the client machine using a stream of
periodic pull requests, delivered in a unicast fashion. Thus,
the implementation of PointCast 1.0 between the client and
the PointCast server is actually the exact opposite of the view
that is presented to the user in all three dimensions of the hier-
archy of Figure 1. This situation is not unique to PointCast;

77

Poincast 1.0
Server

PULL

J
1—Al

Figure 2: PointCast 1.0

in fact, it is true for virtually all of the Internet-based push
solutions, and stems from the fact that current IP and HTTP
protocols do not adequately support push or 1-to-N commu-
nication.

3 Reexamining Current Push Technology

The previous section identified several of the sources of con-
fusion in the current discussions and debate regarding push
technology. In particular, the confusion stems from the mis-
match between the user's perception and the actual data de-
livery mechanisms used by the system. Furthermore, this
mismatch is also at the root of many of the performance con-
cerns (particularly bandwidth overload) associated with cur-
rent push technology. The impact of the mismatch on perfor-
mance can be summarized as follows:

Pull instead of push - Current webcasting solutions typ-
ically use data pull to obtain information from data sources.
This choice is due to limitations of the HTTP protocol, which
is primarily pull-based. As stated previously, replacing push
with pull requires that the pull be done in a polling man-
ner. Polling can be quite resource intensive because it gen-
erates many requests. These requests consume client, server,
and network resources. The problems are exacerbated if all
clients poll individually, which could result in servers becom-
ing overloaded due to the high volume of requests.

Periodic instead of aperiodic - Polling is typically done in
a periodic manner that is independent of the events (e.g., data
modifications) that would require data to be transfered. This
independence results in a granularity problem: if polling is
done too frequently, then the overhead can become substan-
tial; if it is done too infrequently, then clients may unknow-
ingly be accessing stale data.

Unicast instead of 1-to-N - In the absence of a true broad-
cast or multicast facility, systems that require 1-to-N behavior
must implement it using multiple identical messages, one for
each intended recipient. The potential bandwidth problems
of such an approach are obvious. If n clients are interested in
the same data item, then that same item must be sent over the
network n times.

Fortunately, the concept of Network Transparency can be
used to ameliorate this situation. One solution involves plac-
ino a local server inside an organization's firewall. All the
clfents interact with the local server in the way that is most
appropriate for the local network and system configuration.

The local server can then perform polling of the remote data
source on behalf of the entire organization, which reduces In-
ternet traffic. Likewise, the data source needs only to send a
single copy of each data item to the local server, which can
then distribute it to all the clients it represents. The local
server can then multicast the data to its clients, if such capa-
bility exists.

4 Conclusions

In summary, push is currently a hot topic, but it is essential
that it be placed in the proper context. Push is one choice
(among many) for data delivery in distributed information
systems. Push is not, for example, the same as broadcast. In
fact, many existing push-based products are based on peri-
odic pull over unicast connections. In our work on data dis-
semination, we have advocated a new look at the construction
of distributed information systems that allows a seamless in-
tegration of all data delivery mechanisms including, but not
limited to the various forms of push. We believe that this is
a fertile area of work for the database community since the
use of careful data management techniques in this context can
have a significant impact on overall system performance and
usability.

References
[Acha95a] S. Acharya, R. Alonso, M. Franklin, S. Zdonik,

"Broadcast Disks: Data Management for Asymmetric
Communication Environments", ACM S1GMOD Conf,
San Jose, May, 1995.

[Acha95b] S^-Acharya, M. Franklin, S. Zdonik,
"Dissemination-based Data Delivery Using Broadcast
Disks", IEEE Personal Communications, 2(6), December,
1995.

[Acha97] S. Acharya, M. Franklin, S. Zdonik, "Balancing
Push and Pull for Data Broadcast", ACM S1GMOD Conf,
1997.

[Akso98] D. Aksoy, M. Franklin, "Scheduling for Large-
Scale On-Demand Data Broadcasting", Proc. IEEE 1NFO-
COM Conf., San Francisco, March, 1998.

[Amma85] M. Ammar, J. Wong, "The Design of Teletext
Broadcast Cycles", Perf. Evaluation, 5 (1985).

[Fran97] M. Franklin, S. Zdonik, "A Framework for Scal-
able Dissemination-Based Information Systems ACM
OOPSLA Conf., Atlanta, October, 1997.

78

[Giff90] D. Gifford. "Polvchannel Systems for Mass Digital
Communication", CACM, 33(2). February, 1990.

[Glan96] D. Glance, "Multicast Support for Data Dissem-
ination in OrbixTalk", IEEE Data Engineering Bulletin,
19(3), Sept., 1996.

[Herm87] G. Herman, G. Gopa!, K. Lee, A. Weinrib,
'The Datacycle Architecture for Very High Throughput
Database Systems", Proc. ACM SIGMOD Conf, San
Francisco, CA, May, 1987.

[Imie94] T. Imielinski, S. Viswanathan, B. Badrinath, "En-
ergy Efficient Indexing on Air", ACM SIGMOD Conf.,
1994.

[Oki93] B. Oki, M. Pfluegl. A. Siegel, D. Skeen, "The Infor-
mation Bus - An Architecture for Extensible Distributed
Systems", Proc. 14th SOSP, Ashville, NC, December,
1993.

[Wong88] J. Wong. "Broadcast Delivery", Proceedings of
the IEEE, 76(12). December, 1988.

[Yan95] T. Yan, H. Garcia-Molina, "SIFT-A Tool for Wide-
area Information Dissemination", Proc. 1995 USENIX
Technical Conference, 1995.

.,N0 0FfICE 2000-510-079-81:«

79

WILLIAM E. PIEP<A
AFRL/IF^D
525 3»00<S ROAD
ROME* NY 134A1-45?5

asowN ü'J:VE°S:TY
COMPUTE1? SCIENCE CE^T
50X 1513
PROVIDENCE* RI 0 2 ^12

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC ?KY
y.OME NY 13441-4514

ATTENTION:
DEFEMSE TECHNICAL INFO CENTER
5723 JOHN J. KING«AN ROAD* STE ?5i4
FT. EELVOIR* VA 220*0-6218

DEFENSE ADVANCED C£S£ARCH
PROJECTS AGENCY
37D1 »JQ3.TW FAIRFAX DRIVE
ARLINGTON VA 222C3-1714

A
T
TN: NAN PFRI^E

5

::T RES-ARCH INSTITUTE
201 :*ILL ST.
ROME, NY 13443

12

AFIT ACADEMIC LIS^ASY
AFIT/LOR* 2°50 P.ST&EET
APE A ■=>/ 3LDG 6 4?
«SIGHT-PATTERSON 1F= OH 45433-7765

17

AFRL/^ESC-TOC
26<*3 3 STREET, ^LIG 1«0
wO'GriT-'ATT^RoO^ AF? OH 45433-7404

■>?

ATTN: S«DC Iy °L
US AR*Y SPACE & MT.SSILE DEF C*D
P.O. =iOX 150C
hUMTSVILLF *L 35827-3501

24

COLANDER* CODE 4TL00QD
TECHNICAL L'3=A3Y* '.AWC-WO
1 ADMINISTRATION' CI'CLE
CHINA LAKE CA 93555-Ö1GD

27

DL-1

REPORT LI^.iSY

LOS 6LA*0S NATIONAL LABORATORY
LOS ALA*CS N* 873<V5

-*■*

ATTN: D'SORAH Mä'.T

AVIATION BRANCH SVC 122-10
fO:)1QA, »M '31
300 INDEPENDENCE iVF, SW
WASHINGTON OC 205*1

AFIWC/HSY
102 HALL ?LVD, STH 31-
SAM ANTONIO TX '5243-7016

3 6

3 8

ATTN: <AROLA M- YOURISON
SOFTWARE ENGINEERING INSTITUTE
4530 FIFTM AVENUE
PITT3^U=ä« °ä 15213

T*J

U3AF/AI' FORCE 'cSEARCH LABORATORY
AFRL/V50SA(LICR'-RY-*.LDG 1133)

5 WRIGHT DRIVE
HASSCO-1 AF« "A 01731-3004

44

ÄTTN: EILEEN LADUKE/0460
>)ITRE CORPORATION
202 BURLINGTON RD
3HDFQ3D MA 0173':

4 5

CU5D(D)/&TSA/D'JTD
ATT?i: 'ATSICK G. SULLIVAN/ JR.
400 A^YY NAVY 0»IVE
SUITE 300
ARLINGTON VA 2220?

INST TECH LI3PA»Y SOfT-ARE ENGR'G
ATTN- *R DENNIS S^ITH
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213-38*0

4c

94

usc-isi
ATTN: OR ROBERT ". 3ALZER
4675 AD«I»M.TY WAY
MARINA DEL REY CA <J02"2-ö6?:

277

DL-2

K=STREL INSTITUTE
ATTN: DR CORDELL GREEN
1S31 °A3E *ILL *OAD
PALO ALTO CA 043Q4

313

ROCHESTER INSTITUTE OP TECHNOLOGY
ATTN: ?ROF J. A. LASKY
1 L0M3 MEMORIAL DPIVE
P.O. SOX 0 8 87
ROCHESTER NY 14613-5700

410

AFIT/EN5

ATTN:T01
W«>AF8 OH

565

HART°UM
45433-65S3

THE MTTRE CORPORATION
ATTN: MR EDWARD H. 5ENSLEY
aURLINGTON RD/MAIL STOP A350
BEDFORD HA 01730

568

ANDREW A. CHIEN
SAIC CHAIR PROF (SCI APL INT CORP)
USCD/CSE-APS« 430?
9500 GILMAN DRIVE/ DEPT. 0114
LAJOLLA CA '2093-011'»

HONEYWELL, INC.
ATTN: MR 3ERT HARRIS
FEDERAL SYSTEMS
7^00 W£3T°ARK D^IVE
MCLEAN VA 22102

SOFTWARE ENGINEERING INSTITUTE
ATTN: MR. WILLIAM E. HEFLEY
CARNEGIE-MELLON UNIVERSITY
304 OAK GROVE CT
WESFORD PA 15090

UNIVERSITY OF SOUTHERN CALIFORNIA
ATTN: DR. YIGAL ARENS
INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY/SUITE 1001
MARINA DEL REY CA 90292-6695

C0LUM3IA UNIV/DEPT COMPUTER SCIENCE

ATTN: DR GAIL £. KAISER
450 COMPUTE" SCIENCE 3LDG
500 WEST 120TH STREET
NEW YORK NY 10027

AFIT/ENS
ATTN: 3« GARY =. LAMONT
SCHOOL OF ENGINEERING
DP?T ELECTRICAL I COM3UTER ENGRG
yoAFB OH 45433-6583

573

574

576

577

578

532

DL-3

NSA/OFC OF RESEARCH
ATTN: MS MARY ANNE OVERMAN
9330 SAVAGE ROAO
FT GEORSfc G. MEADE *D 23755-6000

53A

TEXAS INSTRUMENTS INCORPORATED
ATTN: DR DAVID L. ».ELLS
P.O. 90X 655474, MS 23S
DALLAS TX 75265

593

KESTREL DEVELOPMENT CORPORATION
ATTN: OR RICHARD JULLIG
32ö0 HILLVIEy AVENUE
PALO ALTO CA 94304

774

DARPA/ITO
ATTN: DR KIRSTIt BELLMAN
3701 N FAIRFAX DRIVE
ARLINGTON VA 22203-1714

1001

NASA/JOHNSON SPACE CENTER
ATTN: CHRIS CULSERT
MAIL CODE ?T4
HOUSTON TX 77053

1004

I

I

STERLING IMD INC.
K.SC OPERATIONS
ATTN: ^ARK MAGTNN
BEECHES TECHNICAL CAHPUS/RT 26 N.
ROME NY 13440

SCHLUMBERGER LABORATORY FOR
COMPUTER SCIENCE

ATTN: DR. GUILLt^MO ARANGO
8311 NORTH FM620
AUSTIN/ TX 78720

DECISION SYSTEMS DEPARTMENT
ATTN: PROF WALT SCACCHI
SCHOOL OF BUSINESS
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CA 90339-1421

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY

ATTN: CHRIS DA3P.0WSKI
ROOM A266/ 3LDG 2?5
6AITHS3UÄS MD 208°9

EXPERT SYSTEMS LABORATORY
ATTN: STEVEN H. SCHWARTZ
NYNEX SCIENCE S TECHNOLOGY
500 WESTCHESTER AVENUE
WHITE PLAINS NY 20604

1C58

1326

1329

1333

1334

DL-4

NAVAL TRAINING SYSTEMS CENTER
ATTN: ROBERT 3"EAUX/CCD£ 232
12353 RESEARCH PA°KUAY
ORLANDO FL 32526-3224

1 335

DR JOHN S»LASIN
DARPA/ITO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

1634

DR BARRY 30EH*
DIR, USC CENTER FOR SV ENGINEERING
COMPUTE» SCIENCE DEPT
UNIV OF SOUTHERN CALIFORNIA
LOS ANGELES CA 9003°-3791

DR STEVE CROSS
CARNEGIE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTSBURGH PA 15 213-3? 91

1639

1640

D» MARK MAY3U?Y
MITRE CORPORATION
ADVANCED INFO SYS TECH; SC
SURLINTON ROAD* M/S K-329
BEDFORD MA 0173?

1641

ISX
ATTN: "R. SCOTT ^OUSE
4353 PA'K TERRACE DRIVE
W€5TL*<E VILLAGE,CA 91361

1a42

MR GARY EDWARDS
ISX
433 PAR< TERRACE DRIVE
WC3TLA<E VILLAGE CA 91361

1643

LEE ERMAN
CIMFLEX TEKNOWLEDGE
1310 EM9ACADER0 ROAD
P.O. 30X 10119
PALO ALTO CA «54307

DR. DAVE GUNNING
DARPA/ISO
3701 NORTH FAIRFAX DRIVE
ARLINGTON V» 22203*1714

1647

1669

DR. MICHAEL PITTA^ELLI
COMPUTER SCIENCE DEPART
SUMY TNST OF TECH AT UTICA/ROME
P.O. 30X 3050

1815

UTICA, NY 13304-3050

DL-5

CAPOAPO TECHNOLOGIES, INC
ATTN: GEPARD C*t>oA»0
311 TURNE» ST.
UTICA, NY 13501

1816

USC/I5I
ATTN: 303 «CSREGOR
4676 ADMIRALTY WAY
MARTHA DEL P.tY/ CA °0292

1817

SRI INTERNATIONAL
ATTN: ENPIQUE RUSPINI
333 RAVENSWOOO AVE
MENLC "ARK*' CA 94025

1813

DARTMOUTH COLLEGE
ATTN: DANIELA "US
D£?T OF COMPUTE^ SCIENCE
11 POPE FERRY ROAD
HANOVER/ NH 03755-3510

UNIVERSITY OF FLORIDA
ATTN: ERIC HANSON
CISE DE55! 456 C3E
GAINESVILLE/ FL 32611-6120

1819

1820

CARNEGIE MELLON UNIVERSITY
ATTN- TOM MITCHELL
COMPUTER SCIENCE DEPARTMENT
PITTSBURGH, PA 15213-3390

1821

CARNEGIE MELLON UNIVERSITY
ATTN: *1ARK CRAVEN
COMPUTER SCIENCE DEPARTMENT
PITTSBURGH, PA 15213-3590

1822

I

1

1

1

UNIVERSITY OF ROCHESTER
ATTN: JAMES ALLEN
DEPARTMENT OF COMMUTE* SCIENCE
ROCHESTER, NY 14627

18 23

TEXTWISE, LLC
ATTN: LIT LIDDY
2-121 CENTER FOR
SYRACUSE, NY

1324

SCIENCE
13244

& TECH

WRIGHT STATE UNIVERSITY
ATTN: DR. BRUCE 9ERRA
DEPART OF COMPUTER SCIENCE
DAYTON, OHIO 45435-0001

132 5

6 ENGIN

DL-6

UNIVERSITY OF FLOPIDA
ATTN: SHAR*A CHAKRAVARTHY
COMPUTER & INFOR SCIENCE DEPART
GAINESVILLE/ FL 32o22"6l25

1326

KESTREL INSTITUTE
ATTN: DAVID ES°INOSA
3260 HILLVIEW AVENUE
PALO ALTO, CA 94304

1827

USC/INFDRMATION SCIENCE INSTITUTE
ATTN: DR. CARL KESSELHAN
11474 ADMIRALTY WAY, SUITE 1001
MARINA DEL PEY, CA 90292

1829

MASSACHUSETTS INSTITUTE OF TECH
ATTN: DR. "ICHAELE SIEGEL
SLOAN SCHOOL
77 MASSACHUSETTS AVENUE
CAMBRIDGE, MA 02139

USC/INFOPMATION SCIENCE INSTITUT:
ATTN: DR. «ILLIA« SWARTHOUT
11474 ADMIRALTY WAY, SUITE 1001
MARINA DEL REY, CA 90292

1S30

1831

STANFORD UNIVERSITY
ATTN: DR. GIO WIEDERHCLD
857 SIERRA STREET
STANFORD ,_„r
SANTA CLARA COUNTY, CA 94305-4125

SPAWARSYSCEN D44209
ATTN: LEAH WONG
53245 PATTERSON ROAD
SAN DIEGO, CA 92152-7151

1832

1833

SPAUAR SYSTEM CENTER D4123
ATTN: LES ANDERSON
53560 HULL STREET
SAN DIEGO CA 92152

1834

GEORGE »1AS0N UNIVERSITY
ATTN: SUSHIL JAJODIA
ISSE DEPT
FAIRFAX, VA 22030-4444

1835

DIRNSA
ATTN: MICHAEL R. WARE
DOD, NSA/CSS (R23)
FT. GEORGE G. MEADE

1S36

MD 20755-6000

DL-7

1 1837
DR- JIM RICHARDSON
3660 TECHNOLOGY DRIVE
MINNEAPOLIS» MN 5541E

1 1838
LOUISIANA STATE UNIVERSITY
COMPUTER SCIENCE DEPT
ATTN: DR. PETER CHEN
257 COATES HALL
BATON ROUGE* LA 70803

INSTITUTE OF TECH DEPT OF COMP SCI 1
ATTN: DR. JAIDEEP SRIVASTAVA

4-102 EE/CS
200 UNION ST SE
MINNEAPOLIS/ MN 55455

j 1840
fT E/BBN
ATTN: MAURICE M- MCNEIL
9655 GRANITE RIDGE DRIVE

SUITE 245
SAN DIEGO, CA 92123

i 1841
UNIVERSITY OF FLORIDA
ATTN: DR. SHAR«A CHAKRAVARTHY
E470 CSE BUILDING
GAINESVILLE, FL 32611-6125

i 1865
AFRL/TFT
525 BROOKS ROAD
ROME, NY 13441-4505

i 1866
AFRL/IFTM
525 BROOKS ROAD
ROME, NY 13441-4505

CENTRIC ENGINEERING SYSTEM, INC. 1

624 EAST EVELYN AVENUE
SUNNYVALE, CA 94086-.648S

i 1875
FLUENT INCORPORATED
500 DAVIS STREET, SUITE 600
EVANSTON, IL 60201

THE MACNEAL-SCHMENDLER CORPORATION 1 1876

815 COLORADO 80ULEVARD
LOS ANGELES, CA 90041-1777

DL-8

MOLECULAR SIMULATIONS, INC.
9365 SC3ANT0N ROAD
SAN DIESO, CA 92121-3752

1 877

CENTRIC ENGINEERING SYSTEM/' INC.
624 EAST EVELYN AVENUE
SUNNYVALE, CA 94036-6488

1873

♦Total Number o* CoDies is 92

DL-9

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

